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FOREWORD

The Thirty-Sixth Conference of the Design of Experiments in Army
Research, Development and Testing was held 17-19 October 1990 on
the campus of the University of Delaware. This university served
as one of its hosts, the other host being the Ballistic Research
Laboratory (BRL). Back in 1987 the Thirty-Third Design Conference
had these same hosts. Professor Henry B. Tingey was the
Chairperson on Local Arrangements for the University and Mr. Jerry
Thomas served in this capacity for BRL. The members of the Army
Mathematical Steering Committee (AMSC), sponsor of these
conferences, take this opportunity to thank these gentlemen for
their excellent handling of the many problems associated with this
meeting.

The original format for the Design of Experiments Conferences,
which are under the auspices of the AMSC, was outlined by the
eminent statistician, Professor Samuel S. Wilks, who served as
conference chairman until his death. Through these symposia the
AMSC hopes to introduce and encourage the use of the latest
statistical and design techniques into the research, development
and testing conducted by the Army's scientific and engineering
personnel.

Members of the program committee were pleased to obtain the
services of the following distinguished scientists to speak on
topics of interest to Army personnel.

KEYNOTE ADDRESS

Design of Experiments for Comparing the Performance of Several
Multi-Stage Procedures for Selecting the Normal Population Having
the Largest Mean When the Populations Have a Common Variance.

Professor Robert E. Bechhofer Professor David M Goldsman
Cornell University Georgia Institute of Technology
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Speaker and Affiliation Title of Addresa

Dr. Paul A. Turkey Some Graphical Techniques for
Bell Communication Data Analysis
Research

Professor Howard M. Taylor Stochastic Models for
University of Delaware Particals in a Moving Fluid

Professor Erik V. Nordheim Statistical Consulting
University of Wisconsin

Professor Arthur E. Hoerl Ridge Regression in Practice
University of Delaware

Each year, two days before the start of the conference, a two-day
tutorial is presented. This year Professor Russell R. Barton, now
at The Pennsylvania State University, presented a tutorial entitled
"Graphical Design of Experiments." It was held on the campus of
the University of Delaware. His notes on this meeting are being
published in these proceedings.

Since no U.S. Army Wilks Award would be given in 1990, the hosts
decided to have an invited speaker after the banquet. Professor
Tingey invited Dr. John C. Bailar, Department of Health and Human
Services, to talk on "John C. Bailar's Laws of Data Analysis." It
turned out to be one of those rare talks that all members in the
audience could enjoy.

The AMSC has requested that these transactions be published and
distributed Army-wide so that the information in them might assist
Army scielntists with some of their statistical problems. Committee
members would like to thank all the speakers for their interesting
presentations and also members of the Program Committee for their
many contributions to this scientific meeting.

PROGRAM COMMITTEE

Gerald Andersen Barry Bodt Carl Bates
J. Robert Burge Eugene Dutoit Jock Grynovicki
Carl Russell Douglass B. Tang Malcolm Taylor
Jerry Thomas Henry Tingey
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DESIGN OF EXPERIMENTS FOR COMPARING TiHE
PERFORMANCES OF SEVERAL MULTI-STAGE PROCEDURES
FOR SELECTING THE NORMAL POPULATION HAVING TIlE

LARGEST MEAN WHEN TIHE POPULATIONS HAVE A
COMMON VARIANCE*

Robert E. Bechhofer David M. Goldsman
School of Operations Research & School of Industrial & Systems Engineering

Industrial Engineering Georgia Institute of T, echnology
College of Engineering, Cornell University Atlanta, GA 30332

Ithaca, NY 14853

We study the performance characteristics of indifference-zone procedures for selecting the normal

population which has the largest mean when the populations have a common known variance, The

procedures considered are the open sequential procedure of Bechhofer, Kiefer and Sobel and a truncated

version of that procedure by Bechhofer and Goldsman, the closed multi-stage procedure of Paulson

which eliminates populationd Indicated as being non-contending, and an improved version of that

procedure by Hlartmann. The performance characteristics studied are the achieved probability of a

correct selection, the expected number of stages required to terminate experimentation, and the

expected total number of observations required to terminate experimentation, All performance

characteristics are estimated by Monte Carlo sampling. In addition, the same problem is considered for

the case of common ujdnown variance, Here the competing procedures are the open non-eliminating

two-stage procedure of Bechhofer, Dunnett and Sobel, the open eliminating two-stage procedure of

Gupta and Kim, and the open eliminating multi-stage sequential procedure of Paulson as improved by

IHartmann. Particular emphliis is placed on the fact that when designing the experiments to compare

the performance characteristics of these procedures there are many relevant factors which mnust be

varied in the conduct of the experiment il order that meaningful and generalizable results can be

obtained,

Research partially supported by the U.S. Army Research Offlce tiumough the Mathematical Sciences

Institute of Cornell University,
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Bechhofer (1954) proposed a statiticai procedure for selecting the normal population which has

the largest population mean with prespecified controls over the probability of a correct selection. Over

the years many additional procedures have been proposed to solve this problem. All of these

procedures guaranteed the following indifference-zone probability requirement:

Prob {Correct selection} :> P* whenever #fk" -(k-1] -

Here uJll -4 11[2] < ." -5 P[k] are the ordered values of the population means p, (I < 1 :5 k); the

values of the ul and pU] (1 _< I, j <: k) are assumed to be unknown as Is the pairing of the pU)

(1 : j< k) with the k populations. The constants (6, P*) with 0 < 6* < oo, 1/k < P* < I are

specified by the experimenter prior to the start of experimentation.

Each of these procedure at the time that It was suggested possessed certain virtues which made it

worthy of consideration. But it was not until recent years that any serious attempt was made to

compare the relative merits of these procedures. The ultimate objectives of such a study would be to

determine whether any particular procedure dominated any other procedure(s), and if so, in what

respect and under what conditions. Such comparative studies could then make it possible to

recommend which procedure It would be preferable to use in certain particular environments.

The first such comprehensive study was reported by Bechhofer and (-oldsman (1989); in that

study which dealt with the cases in which the populations have a common kno vAriance, the critical

performance characteristics were compared for the single-stage procedure of Bechhofer (1954), the two-

stage procedure of Tamhane and Bechhofer (1977, 1979) in which populations indicated as being non-

contending can be eliminated after the first stage, the open non-eliminating sequential procedure of

Bechhofer, Kiefer and Sobel (1068), and the truncated version of that procedure by Bechhofer and

Goldsman (1987, 1989), and the closed multi-stage procedure of Paulson (1964) in which population

can be eliminated at any stage after the first, and an improved version of that procedure by Hartmann

(1988). Most recently Bcchhofer, Dunnett, Goldsman and Hartmann (1990) studied the same selection
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problem for the case of common unknown variance. The procedures considered were the open non-

eliminating two-stage procedure of Bechhofer, Dunnett and Sobel (1954), the open two-stage procedure

of Gupta and Kim (1984) in which non-contending population can be eliminated after the first stage,

and the open multi-stage procedure of Paulson (1064) as improved by Hlartmann (1991) in which

population can be eliminated at every stage after the first.

In the talk presented, results and conclusions for the case of common kU= variance were

discussed In great detail. It was pointed out why the case of common unknown variance introduced

special design problems in terms of the large factorial experiment tu be conducted. The final factorial

experiment as it was conducted is described below. The results of the experiment are reported in

Bechhofo.r, Dunnett, Goldsman and Hartmann (1090).



Design of a Large Factorial Experiment to Compare the
Relative Performances of Four Multi-Stage Procedures for Selecting the Population with the Largest

Mean when the Common Variance is Unknown

J groeir :

a) Bechhofer-Dunnett-Sobel (1054)
b) Paulson-Hartmann with A = 6*/4 (1991)
c) Paulson-Hartmann with A = 60/2 (1991)
d) Gupta-Kim (1984)

I=w underling fetnr:
The value of the unknown variance which plays its role in terms of the ratio a06* where 6* > 0

is specified.

This is under the control of the experimenter. Common number of observations (n1 ) per

population which Is taken in the fiEst stage.

Factos ffictng jh nerfmancn 9f gah grocedure:

a) Number of populations: These were set at three levels:

k=3,5,10.

b) Specified P*-values: These were set at 2 levels:
P*= 0.75, 0.00.

c) Ratios or/6*: These were set at In levels: a./6*=2,3.

d) First-stage sample sizes: These were set at f&U levels:

n, = 5, 10, 15, 20.

e) Configuration of the population means. These were set at

I= levels: least-favorable and equal means.

Thus for L procedure a 5-factor experiment was conducted with 3x2x2x4x2 - 06 factor-level

combinations. For each combination at least 10,000 independent MC experiments were conducted.

The rerponses recorded for each experiment were:

a) The achieved probability of a correct selection.

b) The estimated expected total number of observations to

terminate sampling.

c) The estimated variance of the total number of

observations to terminate sampling.

d) The estimated expected number of vector-observations to

terminate sampling.

e) The estimated variance of the number of vector-

observations to terminate sampling.
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ARTILLERY COMPUTER METEOROLOGICAL MESSAGE
ZONE THICKNESS FOR ALTITUDES ABOVE 20 KM

Abel J. Blanco
U.S. Army Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002-5501

ABSTRACT. The U.S. Army is developing new field artillery systems that
have longer range (50 km) capabilities, As a result, extended altitude
computer meteorological (met) messages are now required for aiming
adjustments that compensate for met effects along the high apogee
trajectory, The following experiment is designed to select an optimal zone
thickness: aerodynamic parameters for an artillery rocket assisted round
ate asiumed. and the Ballistic Research Laboratory general trajectory model
is used to simulate impacts computed from using observed met data and
observed data averaged into proposed zone thicknesses for the altitudes
extending above the current 20 km computer met message height. Measured
upper-air wind, temperature, and pressure data collected during the four
seasons at White Sands Missile Range, New Mexico, are converted for use in
artillery surface-to-surface applications. The 226 rawinsonde flights,
including data up to 30 km height, are partitioned into monthly data sets,
and tests of significance are used to determine an optimal thickness. The
corresponding impact paired differences between the observed data and the
proposed zone averaged data yield statisti. .; that demonstrate the 1-km zone
average as the optimally selected thickness for extending the computer met
message.

1. INTRODUCTION. The U.S. Army Atmospheric Sciences Laboratory (ASL)
continues to support the US. Army Field Artillery School (USAFAS) in
extending the application of the artillery computer meteorological (met)
message at altitudes above 20 km. In lieu of unavailable measured data, a
software technique (Blanco, 1981) was developed to extend the application to
3 km from the maximum ordinate. By 1983, ASL refined a composite algorithm
allowing use of estimated higher altitude met data, Persistence of the last
computer met message line data and satellite climatology or available
artillery fallout met message were merged into an automated procedure that
selects the best options for extending the artillery computer met message,
The USAFAS now has a new requirement of extending the computer met message
to a maximum ordinate of 30 km. The 10 km extension dictates using measured
data instead of the early proposals of using estimated data. The only
constraint is that one can easily overload the fire control computer with
too much met data. The current met array allows 27 observations for each
met parameter--wind direction, windspeed, virtual temperature, and pressure,
These 27 lines remain the same and the new fire control computer storage
requirements are determined upon selecting the optimal zone thickness that
best describes the atmospheric state between 20 km and 30 km above the
surface. The only expected change in the field operations is to continue
collecting met data up to 30 km above the surface. All other required
software changes will be transparent to the user.

This paper presents an optimal zone thickness for the extended
-uitillery computer met message at altitudes above 20 km. The method used in
selecting the zone thickness that can be standardized for artillery
applications includes the following experiment: aerodynamic parameters for
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an artillery rocket assisted round are assumed* and the Ballistic Research
Laboratory (BRL) general trajectory model (Lieske and Reiter, 1966) is used
to simulate impacts computed from using observed met data and observed data
averaged into proposed zone thicknesses for the altitudes extending above
the current 20 km computer met message height, The corresponding impact
paired statistics between the observed and proposed zone thicknesses are
used to document the selection of the optimal zone thickness.

The analysis of these results includes mean component inferences, The
Student t-test and the F-ratio analysis of variance comparison are used to
determine a significant difference between the observed and the 1-km zone
thickness and between the observed and the 2-km zone thickness. A mean

vector inference test known as the Hotelling's T2 is also used for an easier
interpretation of results. This test also allows faster calculations when
using available utilities from the International Mathematics and Science
Library (IMSL). In summary these statistics demonstrate the 1-km zone
average as the optimally selected thickness for extending the computer met
message. With this zone thickness, 10 new lines are added to the computer
met message.

2. DESIGN OF EXPERIMt. The U.S. Army Field Artillery is developing
new weapon systems that have a longer range (assume 50 km) capability. To
reach this new range the projectile must go through a higher apogee, The
projectile propagates through more atmosphere and spends a longer time under
the influence of atmospheric parameters of wind, temperature, and pressure.
Since met effects are known to be major contributors to the artillery error
budget, deployment of met teams in the battle area is required to measure
the atmospheric parameters, prepare formatted messages, and disseminate
computer met messages to the fire control centers, These messages are used
in making final aiming angle adjustments before ordering fire for effect.

Figure 1 presents a two-dimensional plot of height versus range for the
two modes of fire--low quadrant angle and high quadrant angle, New
aerodynamic and ballistic coefficients at the higher mach numbers were
incorporated in the BRL general trajectory model to simulate firings of a
modified M549A1 rocket assisted round. The assumed future configuration of
a 155-mm weapon system fired at White Sands Missile Range, New Mexico, did
not reach an apogee of 30 km. For the low-angle simulations, the projectile
apogee is at 23 km above the surface. For the high-angle simulations, the
projectile apogee is at 26 km, Of course the simulation can perform the 30
km apogee; but at this higher angle of fire the BRL test on maximum angle of
attack exceeds a predefined criterion, which indicates that the projectile
is not trailing the trajectory and there is the possibility of actual round
tumble. Following the BRL criteria, this report evaluates results from
simulations containing 23 to 26 km apogees corresponding to the low and high
quadrant angles.

*Robert Lieske, 1990, Memorandum SCLBR-LF-T (340), "Maximum Ordinates for

Extended Range Ordnance," U.S, Army Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland.
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Figure 1. Assumed 155-mm cannon projectile trajectory.

All effective fire includes met adjustments, and table I presents the
zone thicknesses for three artillery met messages, Today's artillery
meteorology still depends on a balloon.borne sensor to provide the
appropriate wind, temperature, and pressure measurements. In computing the
fallout message for example, the balloon is tracked up to 30 km above the
surface. The current computer met message provides met data up to only 20
km because cannon artillery has not exceeded this maximum ordinate. Special
artillery rockets have the capability of exceeding this altitude, and the
USAFAS has requested methods of extending the application of the available
computer met message. To thi* date the software estimations have been
appropriate only because the required extension was within 4 km of the last
observed computer line data. With the advent of future artillery systems,
there is a need to extend the computer met message to a maximum ordinate of
30 km, Met hardware and software are already available and the only task is
to standardize the zone thickness within the 20 to 30 km altitudes.

This task has been a cooperative effort between the UASFAS, BRL, and
ASL. ASL recommended all 1-mmn observations; however, the USAFAS is
constrained to available computer storage space in the fire control centers
and cannot support this -300 m thickness. BRL has assumed aerodynamic
characteriatics and provided ASL with the point mass trajectory model for
use in computing the desired long-range cannon fire. An experiment is then
designed to prepare met messages that contain 1-min observed data, l-km zone
averages, and 2-km zone averages. Theme formatted data are then input to
the BRL point mass general trajectory model for simulating impacts. All
replicates are then pa'red and statistical results are interpreted to
determine if proposed averaged data and the observed data are significarLtly
different.



TABLE 1. FM 6-15 ATMOSPHERIC ZONE STRUCTURE

HEIGHT HE____ NZLU~MBERS -

MmETERS LLUZTL Q COMPTERL FALLOUT
•SURFACE 0 0 0

200 1 ,Soo 2 2
1.000o 1 3 3
1.500 1 44
2.00o 1 5 _

2, 500

_4A0 -7

5.000 a 113

LQJML. L _L

7.000 138.000 1 10 .. 144
_9,000 1 i
10.000 1 11 16 5S,

1.0 11 17
12. 000 1 12 .. .. 60..

16.0014 ,,22 a ,

1A.000 is 24
S~25

130,00 go

3. METEOROL0G1CAL DATA BASE. An available set of upper-air data
containing observations up to 30 km was retrieved from met support provided
for special projects at White Sands Missile Range, Now Mexico, during 1989.
A sample of 226 rawinsonde flighto containing representative sets for each
of the four seasons is used an the met data bass. Table 2 presents all
replicate rawinsonde flights with Holloman, White Sands, and Small Missile
Range containing the larger samples,

10

I I I III I II I -II I I II I I i II l l~ l i i lil l. . . . .. .. . .



TABLE 2, NUMBER OF RAWINSONDE FLIGHTS COLLECTED DURING 1989

MONTHLY FLIGHTS

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOT

HOLLOMAN 4 2 S 6 10 S 4 5 a 7 4 6 64

WHITE $ANDS 8 2 S 1 6 S a 6 S 10 66

JALLEN 1 1 7 a 15

STALLION 1 1 a 1 1 1 a

SMR 4 1 7 1 a 8 16 9 6 a 1 so
NW 4O 1 1 1 a

TULA SITE I I 1 9 1 1 1

OASIS a e * 1 9 12

LAS CRUCES 1 I

TOTAL 17 8 16 10 34 12 1 10 SOD 17 11 I
WINTER SPRING SUMMER FALL
4S 66 71 46 ge6

Each rawinsonde flight in this data base was reduced into the 26
computer zone averages by using a linear fit methodology. Given the
particular data (W equals wind, temperature, or pressure) versus height, one
can interpolate for any information within the adjacent observed data by
using the linear coefficients (a and b):

W(i + l1 - W(il W(i) Z(L + 11 - Wei.+_1).2(1ia MZ(i + 1) - Z(i)' b- Z(i + l) - z(1)

where the range of application is within Z(i) and Z(i + 1). Then for a
given height H between Z(i) and Z(i + 1), one can compute the value of the
met parameter W by

W - a H + b. (2)

With this linear coefficient method, one can derive the value of the met
parameter at the bottom and top of any defined zone thickness. Figure 2
illustrates the position of the data (o) and the location of the artillery
zones (H(i)'s), The total AREA defined by the vertical axis, the bottom
horizontal line at height H(l), the top horizontal line at height H(2), and
the met parameter function within the interval H(l) and H(2) is calculated
by the sum of the composite areas. For example,

dwdh - (ah + b) dh - h + bh (3)
2 1H(l)

computes the area by integration between H(1) and Z(2). Repeating the
interation between Z(2) and Z(3) and Z(3) and H(2) yields the composite

11



areas, and the sum of these areas defines the total AREA. Using the Mean
Value Theorem, one can derive the mean value of the particular parameter
within the artillery zone thickness by

AM (4)
AH

Since the atmospheric pressure is exponentially related to the height, the

natural log of the pressure is computed before the linear fit and averaging
routines are executed. At the end, the exponential function is applied to
the output to express the zone pressure avorage,

SHOWl ... pm-H/ 
Z(8)

H(,) Z(_)H(9

1 2(4)I

T()

HO1) - -- '

MET PARAMETER

(wind, temperature, pressure)

Figure 2. Met data and zone thickness,

In computing the wind zone averages, the artillery interpolates for the
x and y balloon positions at the bottom and the top of each artillery zone
then divides by the time the balloon ascends from the bottom to the top of
the zone. Note from table 1 that the computer zones are not the same
thickness. Since actual computer met messages are not available, the best
estimate for reproducing the artillery met message from the available
rawinsonde data is that described in this section.

Figures 3 through 5 present reduced computer met messages extended to a
higher altitude with the actual observed data and the two proposed zone
averages. Note that line 0 or the surface is at the Holloman site elevation
of 1258 m and the top of line 26 is at 21258 m. In the experiment this
structure is fixed and the only variable is the data from the top of line 26
to the last available met observation. These plots present the observed
wind component profiles for the December 22 flight at the extended computer
met message heights, The observed data represents 1 min or about 300 m
interval observations, Using the information in figure 3 as input to the
BRL general trajectory model, one can compute a 43506-m range and a 5137-in

12



crossu-component impact for the assumed future projectile fired at a high
quadrant angle of 1150 mils, In figure 4, the extended observed data is
averaged into 1 km zones, and the simulated impacts demonstrate almost
identical results, However, when one averages the observed data into 2 km
zones, as represented in figure 5, the simulated impacts demonstrate a -64 m
range and +53 m cross difference,

30000HOLLOMAN WINO COMPONENT PROFILES DEC 22, 198

28000- -- - OS -1

26O000 . . ....._ ' '__ _ __ _

,u 24000 - " - - BSEV 0D- T
• 22000 - - " ="

20000 - -S" - -- .~j 24000 ME

S20 000B 

C YE D T

18000

e6000 ---

14000

12000

,iue3 .Cmue widcmoet xede ihosre aa

2000 - -

2600 - - 0 - - -

4 2000 - -

20000

2600 - -2 -0 1- 20-0 4

WIND COMPONENTS (mill
Figure 3. Computer wind components extended with observed data,

3=0 oHOLLOMRN WIND COMPONENT PROFILES DEC 22, 198

28000 -.-

-- 'iz'- .5''" km-Z06E DATA
S24000 - -

22000 --

20000 --

8000 -- __,,. __

16000

14000

GOOO0 - - --"-

-30 -20 -10 0 10 20 30 40
WINO COMPONENTrS (rn/a)

Figure 4. Computer wind components extended with 1 km averaged data.
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IIOLLOtII9N WIND COMPONENT PROFILES DEC 22, 1989
30000 ---- ,-----

260o . ..... .. "-.... .. ... ._

mu m ,, I

-300 -;mZ-O 0 I0 0 3 4

S28000 -I - - -

220m --110o m zH CAT

24ND TEDONNT T_/

216000D - - .- -

20000 --

14000-

32000 -A(- -

40*00haE WET 4

WINO COMPONENTS (rn/o)

Figure 5. Computer wind components extended with 2 km averaged data,

4. ANALYSIS OF SIMULATED IMPACTS, For the six available Holloman

December met messages, one can compute 18 impacts representing the observed,
1 km, and 2 km averaged data, Figure 6a presents these simulated impacts,
The impacts derived from using the December 22 averaged profiles presented

in the last three figures are now identified with a 6, Note that the dark 6

represents two impacts and the light 6 represents the other, One can see
the same general results for the other numbered impacts, For this month the

simulated impacts derived from using the observed and 1 km averaged data are

almost identical. Pairing the impacts resulting from the observed data with

the corresponding impacts from the 1 km and 2 km averaged data, one can see

a significant difference in using the proposed zone thicknesses as

illustrated in figure 6b. Not all results include this easily derived

graphical interpretation; therefore, tests for the mean component

inferences were automated (Rickmers and Todd, 1967),

SIX SZIMULATE:D IMPRCTS UBING OBSERVED VERSUS PROPOSED ZONE

9,3, 1,8, 1.S km MET ZONE THICKNEGS PAIRED DIFFERENCES

""M(mm I'm 1km ZONW RNDW(m) Vs Nkm ZONUt

siMll'I18 81 In,

iin . .. iN...) 
--. N _ _

as 

14

Figure 6a, Simulated impact., Figure 6b. Paired differences.
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The first statistical test is the Student t-test, The paired

differences (n, average, and sigma) are used to derive a t-value

tcomputed m (5)

where

a - average difference between pairs

8 - hypothesized pair difference

oa - standard error -

In this paper and in general 6 is made equal to 0. By comparison with the
t-table value, one can determine presence of a significant difference using
the 5-percent alpha risk. If the computed value is within the ± table
value, then one can accept the null hypothesis that no difference exists.

Another test is the F-ratio analysis of variance, Theoretically the F
distribution is the square of the Student t and a conclusion for the two
tests is the same. However, the F-ratio analysis of variance provides other
information that the Student t does not. In computing the different ratios,

F variance of means (6)variance for errors

a significant difference among the six met rawinsonde flights was revealed.
In the selected two-factor setup of the F-ratio test, each observation is
assumed to be determined by the following four possible effects: the general
mean of the data, a possible zone thickness effect, a possible atmospheric
(rawinsonde fiights) effect, and the effect of the error in our hypothetical
mathematical model of the sum of the variances.

These tests were performed on the component impact differences.
Analyses of the results were difficult to interpret because, as illustrated
in table 3, the cross-component 1-km average contains the computed t- and
F-values outside the corresponding table values, The conclusion is that the
1-km average provides significantly different cross-component impacts than
those impacts derived from the observed data, Different conclusions from
the individual comparisons for each component impacts were not encouraging.
The graphical results in figure 6b indicate that the observed and 1-km zone
averaged data provide similar impacts and should not be considered as
significantly different, This is certainly true when considering the lethal
radius of the delivered munition, To maintain agreement with the graphical
results, a third statistical test was automated.

The Hotelling T2 test uses the mean vector impact differences and
allows easier interpretation of the inference results, Table 3 now reveals
that there is no significant difference between the observed and the 1 km
averaged data for the December flights collected at Holloman, However, the
comparison between impacts derived from the observed and the 2 km averaged
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data reveal that there is, a significant difference. Under theme atmospheric
conditions and this high quadrant angle of fire, the met data must be
formatted into 1 km averages to allow accurate artillery fire.

TABLE 3. INFERENCE TEST RESULTS

USING HOE SIMULATED IMPACTS FOR DEC HOLLOMAN MET DATA

STUDENT t F RATIO HOTELLING T
cross range crose range vector (F)

TABLE VALUE 2.57 2.67 6.61 6.61 6.94

1 km ZONE 2.71 -1.56 7.38 2.41 3.77

2 km ZONE 5.90 -7.06 34.82 49.83 20.04

Not only are the Hotelling results easier to interpret but this test
also allows faster computations by using subroutines from the IKSL. No new

software development or table lookup is required. The computed T2 value is
defined (Johnson and Wichesrn, 1989) as the quadratic form; and knowing the
mean and the covariance matrixes, one can derive the result by utilizing the
IMSL subroutine, "blinf."

T - quadratic form "blinf" (7)

T - n (X )t S' (1 . ) (8)

where

-~n

(pxl) jJ-1

n

(pIp) - n (X. . X) (X -

J-1

(A) - a plausible value for the mean

p - 2 (the range and cross variables)

X - the matrix of paired impact differences.
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The distribution of T2 has the following F distribution relationship:

(n- 1) p

(n- p) Fp,n-p

where

n is the number of paired impact differences and
p is 2 representing the range and cross variables.

Solving for F in the above equation, one can compare the computed value
with the table value obtained by using he "fin," IMSL subroutine. Another
method to determine the presence of a significant difference is to compute
the probability - I - "fdf" where "fdf" (IMSL subroutine) is the cummulative
distribution. The alpha risk is then used as the criteria to demonstrate
presents of the null hypothesis, no significant difference,

5. EXPERIMENTAL RESULTS. In general the statistical comparisons yield
results from the following categories: (1) during stable weather conditions
all proposed zone averages demonstrate agreement with observed data; (2)
during unstable weather conditions all proposed zone averages demonstrate
disagreement with observed data; and (3) under certain weather conditions
one zone average exists that is a better observed data estimator than the
other proposed zone average.

The Hotelling results for each month are listed in table 4. Beginning
with the Holloman, December, high quadrant angle results which have already
been dir cussed in the previous two sections, let's define the "N" for no
jignificant difference and the "Y" for a significant difference, By
reviewing the results in table 3, one can see that the computed F for the 1-
km zone is within the ± table values and that the comput'ed F for the 2-km
zone is not within the ± table values. Therefore, for the high quadrant
angle we note an "'N" for the l-km zone and a "Y" for the 2-km zone during
the month of December. For February there are only two rawinsonde flights
(n) and since the Hotelling test requires that the number of variables be
equal to the degree of freedom (p), the (n - p) computation in the
denominator of the Hotelling distribution leads to a division by zero. So
the other symbol, "-," in the table indicates that there is not enough data
to complete the test. For the other stations, "-" may also indicate that
there is no data for completing any mean inference test.

Overall, the majority (30 cases) of the Hotelling mean vector inference
test of the paired impacts derived from the met flights averaged into the
different zones reveal no significant difference. In the minority (12
cases), particularly for low quadrant angle of fire, none of the proposed
zone met averages are representative of the observed data. This observation
is true for all months during the year but seems to occur more often at the
SMR station, which is located closer to complex terrain. Eight of the
remaining 11 cases show that the 1-km-zone averages yield better impact
results than the 2-km-zone averages. This further demonstrates that the
1-km-zone averages produce almost identical simulated impacts as those
produced by using the 1-min (-300 m) observed met date.
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TABLE 4. SIGNIFICANT DIFFERENCE BETWEEN OBSERVED AND PROPOSED ZONE

LOW QUADRANT ANGLE
USING HOL SIMULATED IMPACTS FOR MONTHLY MET DATA

1 2 S 4 5 6 7 S 9 10 11 12

1kmZONE N - N N N N N Y Y N N N
2kmZONE N - N N Y N N Y Y N N N

HIGH QUADRANT ANGLE
IkmZONE N - N N Y N N N N N N N

2kmZONE N - N N Y N N N N N Y Y

USING SMR SIMULATED IMPACTS FOR MONTHLY MET DATA
LOW QUADRANT ANGLE

1 2 8 4 6 6 7 8 9 10 11 12
IkmZONE Y - Y - Y Y - Y N N -
ikm ZONE Y - Y - Y Y . Y Y Y N -

HIGH QUADRANT ANGLE
IkmZONE N - N - N N - y N N N -

2kmZONE N - N - N N - N YN - -

USING WOD SIMULATED IMPACTS FOR MONTHLY MET DATA

LOW QUADRANT ANGLE
1 2 8 4 5 6 7 S S 10 1112

IkmZONE Y- Y - N N Y N Y N - -

RKmZONE Y - Y - Y N Y N Y N - -
HIGH QUADRANT ANGLE

IkmZONE N - N - N Y N Y N N - -

2 kmZONE Y - N - N N N N N N - -

6. SUMMARY AND RECOMMENDATION, From the majority of the 226 rawinsonde
flights evaluated, it is revealed that the atmospheric state can be
accurately represented by either 1 or 2 km zone averages. Under this
condition the artillery may use the already available fallout zone extension
to the computer met message. However, this paper also identifies cases
where the atmospheric state could not be represented by any of the proposed
(I km or 2 km) zone averages. Under this condition the artillery must use
all available observation to allow accurate artillery fire. Since the 1 min
(-300 m) would require some 33 new lines to extend the currer:t computer met
message to the new height of 30 km, the 300-m-zone thickness is not a
possible solution because of the limited fire direction computer storage
constraint. The upper minority of cases reveal that the 1 km is
representative of the observed met data. This result and the majority of
cases that reveal no difference in zone thickness indicate that the 1-km
zone is the optimal of the two proposed zone thicknesses.



In conclusion, it is recommended that 10 new lines be required to
describe the atmosphere between 20 and 30 km above the surface. Future fire
direction computers shall have storage available for 37 lines of met
information, Each line shall contain an average value for wind direction,
windspeed, virtual temperature, and pressure at the designated height, The
extended computer met message zone structure for long-range artillery
surface-to-surface fire shall be composed of ten 1-km zones averages.
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A RANK CORRELATION APPROACH FOR TREND DETECTION OF
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ABSTRACT

The prediction of future demands for each of over 200,000 demand-based repair parts is crucial
to the readiness of the Navy, and certainly other branches of the Armed Services. Item mana-
gers with only eight quarters of history are responsible for ordering that which is sufficient
to fill material requirements over an average eight quarter procurement leadtime and simul-
taneously staying within economic bounds and excess material constraints.

Pivotal in demand prediction is the ability to determine whether the demand time series are
stable or, if trending, are they increasing or decreasing.

Former methods do not seem to do the job now, and one reason is that the average procurement
leadtime is nearly twice what it was 10 years ago.

The present approach has turned to the use of nonparametric analysis, in particular, using
Kendall's S (or T). The following factors and levels are considered:

a Window Size: N - 4, 6, 8, 10 sample sizes of recorded demand

e Demand Level: Poisson, low, medium, high, very high average quarterly demand x

Ratio of ;/x: Five levels dependent on the level of demand

Extensive simulation, as well as actual demand data, are used to estimate the degree of type 1
and type 2 errors and the expected performance of the "S" statistic for various combinations
of demand and variability levels. Xendall's "S" does a good job confirming no trend when
there is no trend. Also, it is satisfactory to detecting trend when there is trend and
discriminating between increasing and decreasing trends.

-.Ne weakest link in the chain, so to speak, is detecting the commencement of a trend in demand
immediately following a nontrending period, as well as identifying when a trend has terminated
and the process generating demand is now stable. A lag of maybe three periods can occur.
However, proper selection of window length plays an important role here in minimizing the re-
action time.

I. INTRODUCTION. Prior to this research, the Navy had been using a trigger-
trend statistic to identify situations where demand was trending; namely,

T 2 (DI + D2 ) (1)
D, + D2 + D3 + D4

where D1, D2, D3, and D4 are, respectively, the last four quarterly demands, D1

being the most recent. Thus, the trend statistic "T" was simply the ratio of
twice the sum of the last two quarters of demand compared to the sum of the
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last four quarters of demand. The value of this statistic could range from a
minimum of zero to a maximum of two,

When this statistic's value lay between ,9 and 1,1, it was concluded that
no appreciable change in the demand pattern had occurred and the last demand,
DI, was exponentially smoothed with the last forecast to compute a new fore-
cast. The nontrending smoothing weights were:

.. (DI) + .9 (Last Forecast) - New Forecast

On the other hand, when this statistic was less than .9 or greater than
1.1, it was concluded that a trend existed and the smoothing weights were in-
creased to .3 and ,7, thereby placing more emphasis on recent demand,

Experience over the last decade showed an increase in the percent of con-
tracts for material that had to be cancelled because excess material was on-
hand or on-order. The counterpart to this, insufficient material on-hand or
on-order, was also on the rise. Additionally, procurement leadtimes in the
past 10 years have risen from a year on the average to two years, significantly
increasing the material forecast horizon.

Both top management and individual item managers believed that this trig-
ger was overreacting, that it was too sensitive to random noise in the system.
This study was undertaken to examine the trend detection method more closely,
Chart I portrays evidence confirming these management concerns from the quar-
terly trend statistics for the period June 1987 through March 1989,
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Our first examination of formula (1) was done by using a table of random
numbers to obtain a sample frequency distribution of the trend statistic. The
demands were separated into three categories; 0 to 1, 1 to 5, and 6 to 9 units
of quarterly demand,

Using a sample of size 40, we obtained for the random nontrending (low
usage rates) demand of size 0 or 1 the following pattern of values for the
statistic:

Trend Statistic 0 .67 1.00 1..33 2.00

Frequency 1 5 3 1.9 I 4 9

It is easily seen that using trigger values of .9 and 1,1 would conclude
that demand was trending 53% of the time for low demand items. Furthermore,
it is interesting to consider the 16 possible permutations of Os and Is over
the eight quarters. Here we find the values for the trend statistic to be:

Trend Statistic 0 2/3 1 4/3 2
-I I I I

Frequency 13 2 3 2 4

So much depends on the case of four consecutive periods of zero demand,
This situation has no numerical value, but common sense would indicate that we
should assign these cases the value of one, If this is done, the statistic is
biased to the right of one. Also, it is interesting to note what percentage
would be declared trending using different lower and upper bounds on the trig.
ger statistic,

Trigger Statistic
Threshold Bounds Percent Triggered

Lx-
.9 to 1.1 70%
.8 to 1.2 70%
.7 to 1.3 70%
A6 to 1.4 43%

Thus, the trigger trend statistic %ould still indicate trend in 43% of the
cases even using for a lower bound any number from 0 to .6, and for the upper
bound, any value from 1.4 to 2. At this point, it became clear that no sta-
tistic such as this should be used on a string of zeros and ones. Yet, the
majority of items managed by the Navy have characteristically low demand
rates.

A similar analysis was conducted for the medium demand category (one to
five demands per quarter) using a random sample of size 20. The following
table was obtained for the same statistic (values were rounded off to the
nearest tenth):
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Trend Statistic .3 .6 .8 1.0 1.1 1.3 1.4 1. 6

Frequency I 1 3 3 4 1 5 1 1 2

Again, the mean is slightly larger than one and the present lower and
upper bounds on the trigger (.9, 1.1) would signal trend on the lower side
about 35% of the time and about 40% on the upper side. A simple examination
of the data suggested changing the thresholds to .6 and 1.6 for low and high
cutoffs to obtain 80% assurance that a trend is not declared for common sta-
tionary demand situations.

Finally, for the high demand (values of six to nine demands per quarter)
using a random sample of size 30, we found the following values:

Value .87 .901 .91 .931 .941 .961.97 1..001.03 04_1.0711.131.14

Frequency 1 1 1I2 1I3 2 2 1 3 11 4 1 1I 1 2. 11

For high demand items, it appears that the trend statistic becomes more
stable and lies within a decreased computational range. The threshold values
(.9, 1.1) hardly come into play. So in these situations, the probability of a
Type I error is relatively small and may be tolerable.

In September 1989, action was taken to widen the trigger trend threshold
values from (.9, 1,1) to (.6, 1A4) in an effort to reduce the Type I error,
CHART II details the reduction in the number of items designated as trending
after these changes were accomplished. Significant reductions were achieved
for high and medium demand items, but low demand items were relatively un-
affected, experiencing almost a flat (45,000 to 50,000 items) trend declara.
tion level, This finding is consistent with our theoretical conclusions dis-
cussed earlier relative to the trigger trend statistic expected performance
for low demand items with a large percentage of zero observations,

This relAtively minor forecasting change, based only on straightforward
extensions of probability theory and operations analysis techniques, led to an
immediate 10 million dollar per quarter reduction in inventory requirements
changes. Requirements changes (churn) due to quarterly reforecasting of de-
mand was measured in June 1989 as approximately 30 million dollars per quarter
at SPCC. Of this amount, 10 million dollars worth of changes was attributed
directly to the prior overly sensitive trend trigger thresholds of (.9, 1.1)
invoking (.3, ,7) smoothing on about 11,000 high and medium demand items.

These reductions wore primarily due to decreases in the amount of quarter
to quarter change in the key inventory requirements areas of economic order
quantity and reorder point computations, Operationally, whenever unnecessary
or unwarranted requirements changes are reduced, better estimates of future
needs and budgut requirements can be made and rework of procurement orders are
reduced. Likewise, significant reductions can be achieved in excess material
on-order as forecasts become more stable.
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fiýkm thes theoretical aspeut, ve recognize in formula (1) that by dividing
the numeraLor and denominator of thn statistic by four, that it is essentially
a quotient of the means of a sample of size two and a sample of size four.
Furthermore, the two means are correla'ted in that the two most recent quarters
of demand appear in both the numerate., ani denominator.

Much has been written on the product and quotient of two random variables,
It is a theoretically complicated subject. Only in the restricted situation
of two normally distributed variables that are correlated has an explicit
density function been dirived. In this case, E. C. Fieller in 1932 showed
that if i and y are bivariate normal with correlation p, the statistic

39 - UX

has frequency function

B(Z) (1-ps)% da8 -(I - 2pZ + Z') 5 Z :5

It doesn't seem defensible to try to invoke such theory in our present situa-
tion. Now that it was clear that the previous method used to detect trends
was problematic, our attention and research turned to alternative methods for
trend detection and estimation.
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II. FIRST ATTEMPTS TO IMPROVE. Having concluded that the trigger-trend
statistic had serious operational limitations (poor trend detection and poor
stability confirmation) we began research into alternative methods for trend
detection in time series data, Our goal being to select and evaluate a method
which was:

e Simple to use and interpret by Inventory Managers.

$ Robust.

* Invariant to distribution assumptions.

* Excellent ability to confirm stationary demand,

0 Relatively good ability to detect substantial trends and process
chanse.

C Could be used effectively with small sample mites.

We sought first to identify a suitable method to detect trends and then sub.
sequently select a method to ascertain the level of trend present.

The work of Gini provided a fundamental understanding of the relationship
of the variance between individual observations and the variance of the series
of observations, From this research, we come to the common sense, but much
overlooked conclusion, that for a nontrending time series, each of the obser-
vations are equally likely events. That the highest and lowest values may be
first, last, or in the middle of the merits and yet no trend may be present,

Tintner's work on the variate difference method provided an important in-
sight and understanding to our most prevalent demand pattern ... the ZIG-ZAG
demand pattern, From his work, we were able for the first time to realize
that the majority of our items were not trending but rather oscillating be-
tween values of high to low observations. Many trend detection methods ex-
perience difficulty in handling oscillating demand patterns and, in particu-
lar, our trend-trigger statistic is overly sensitive to such common demand
relationships.

Closely related to all this is what we call the mean squared successive
differences. Here we compute the average of the squares of the (n-l) success-
ive differences between successive elements in a random sample of size n. it
has been shown that the expected value of this statistic, namely of

EZ &+ - X,)z (2)

n-1

is 24, when the base population distribution is normal. But the expected
value of the ordinary sample variance, namely of

28



n-5l

is al. Therefore, we can say the ratio

6m

has expected value 2,

Dr. von Neumann gave us the distribution function of q, and in 1942 Dr.
Hart provided a table of its values, However, as has happened in so many
other situations, Dr. von Neumann assumed the sample came from a normal dis.
tribution, So, in order to use this statistic, we are parametrically bound.
When data has an upward trend, 82 will increase much less than s2, so q would
be less than 2. On the other hand, if the data rapidly goes up and down (a
situation which we now face to which our present triyer seems to be sensi-
tive), 62 will increase proportionally greater than s Then t will be grea-
ter than 2 and would be unsatisfactory.

Some attention was also given to using a sign test or a runs test using
the median. The analysis showed such examination would not detect nonrandom.
ness when n did.

111. TREND DITECTION USING RAn OOMRILATION APPROUOC, In this work, it is
difficult, if not impossible, to defend any assumption of normality, A mea-
sure which is robust is desired, Kendall's 9 (Tau) in based on the ranks of
observations as opposed to the magnitudes associated with then. What is im-
portant is that the 'IS" distribution is independent of the distributions of
the variables of interest, e.g., the independent and dependent variable in
linear regression, Interesting and useful is the fact that if two variables
have a monotonic relationship, their ranks will have a regression that is
apparently linear, Hence, the ranks can be considered to be transformed
variables.

Lot us now discuss the concept of rank correlation as it applies in our
case to demand observations over a period of time. Consider a set of data
values ordered in time; i.e., demand observations ranked by quarter:

(zip Y•l xL+1, yL+1; .,..; Xn, yn)

where

x - 1 2 3 4 5 6 7 8 (time in quarters)

y - A B C D E F G H (observed values)
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If there is a trend, there will appear to be an arrangement or ordering to
the data. That is, if the ranks are correlated, then as 11x" increases "y"
will generally increase or decrease, Where there is no trend, we should ex-
pect the values to be randomly arranged. Kendall refers to the first case as
"array" and the second as "disarray" in the data,

(1) Let us first arrange one rank in its natural increasing order:

Time - z1 , za, x3 , * s 3n

Then we compare all possible 11] demand observation values two at a

time. For example, for the first paired observations:

where Yi - A and ya - B

(2) Upon inspection, if we find that yj > Yj, implying that B > A, then
Kendall would call the pair concordant, since the values are in agree-
ment or arrayed with respect to the ordering of time. For each such
pair assign a score of +1.

(3) However, If we find that y& < YL, implying that B < A, then the pair
is called discordant, since the values are in disagreement or disarray
with respect to time, For each such pair, assign a score of .1.

(4) In the special case where ya - Yl, that is B - A, the pair is consid-
ered to be tied in ranks and a score of zero is assigned.

(5) The Kendall "S" statistic is simply the sum of the number of conoor-
dant pairs less the sum of the number of discordant pairs. It is a
measure of the rank correlation between the order of the variables in
time and their order in magnitude, The following table displays the
probabilities that the absolute value of "S" attains or exceeds a
specified value for a sample size of eight observations:

KENDALL "8" PROBABILITIES
SAPLIZ SIZE O S05B

* PROBABILITY "S" ATTAINS O EXCEEDS A SPECIFIED VALUE

III MlR III Ma

0 .546 14 .054
1 .500 is .043
2 .452 is .051
3 .406 17 ,024
4 .380 to .016
5 .317 16 .012
S .274 so0 .0071

7 AS7 21 .005
I .191 22 .0026
9 .160 23 ,0011
10 .136 24 .0067
11 .114 25 .0005
i3 l05e 26 100019

--- 1-• .0715 27 .00011
2d 1000015
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The Kendall "S" statistic measures the degree of rank correlation on
ordering present in the data. Its range is equal to the maximum
number of pairs of comparisons that can be found between the two
rankings. In the present case, "S" will range from (-28, +28):

n([] . L. - 831). 28
2 2

In this case, if we assume a nontrending stationary demand time series
with 28 possible rank combinations, one would expect from theory that
exactly 14 pairs would be concordant and 14 will be discordant yield-
ing ("S"-+14-14-0) an "S" value of zero. Inspection of the above
table would suggest that this condition would occur about 55% of the
time.

Where the data is perfectly arranged in increasing or decreasing
order, "S" would attain values of (+28, -28), respectively. Between
these extremes of perfect to zero rank correlation probabilities can
be assigned for observed values of "'S" which can form the basis for
hypothesis testing against the existence of trend.

(6) Construct an hypothesis test against the existence of trend.

- H.: No trend exists
- Hi: Trend is present in the data

We will reject the hypothesis H. that no trend is present in the data
if the probability of "S" equals or exceeds a specified critical
value. In the table above, we selected a critical value of about
seven percent yielding an "S" value of 13 which must be achieved or
exceeded before we would reject the hypothesis of no trend present in
the data.

For the reader not familiar with Kendall's S (Tau) in trend analysis, we

present a numerical example:

NAVY PART NIN 00-025-3457

Demand 1 2 2 3 2 3 7 2

Quarter 1 2 3 4 5 6 7 8
Oldest Latest

Rule: Subtract every demand from each one that precedes it, If great-
er, assign +1; if less, assign -1. If equal, arsign 0. Sum the
positive and negative scores to calculate "S".
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1
2 +1
2 +1 C
3 +1 +1 +1
2 +1 0 0 -1
3 +1 +1 +1 0 +1
7 +1 +1 +1 +1 +1 +1

S-Z +7 +3 +3 -1 +2 0 -1

S - +13
Pr (S s 13) w .958

since

Pr (s : 12) - .946 Pr (8 > 12) - .089
0 > 13 - .072

Pr (8 < 14) - .969 Pr (S ? 14) - .054

Oven's Tables Kendall's Table

Thus, Kendall's !S" with an error probability of about 7% suggests a high
probability of an upward trend present in the data. Kendall's Tau (a) like-
wise, is a simple linear transformation of "S" and is calculated by dividing
"S" by 28. With an effective operating range of (-1, +1), Kendall's Tau (a)
parallels the range of the Pearson correlation coefficient of parametric sta-
tistics.

IV. NOIlhAhATO TRDXN' ,STZEMThO. It is well known that an outlying
observation can have an appreciable effect on the position of the parametric
least squares fit. On the other hand, the regression that passes through the
sample median of X and, simultaneously, the sample median of Y instead of the
centroid, is less sensitive to outlier observations, If, in addition follow-
ing Son, we use for the slope the median of the set of slopes determined from
all possible pairs of points, we will have induced more stability. For "n"
data points, the slope set will have n(n-l)/2 slopes and this seems to have
something in common with the calculation of Kendall's S (Tau) to detect trend.
It is interesting to note that the classical least squares estimate of slope
can be obtained from a weighted average of these individual slopes as can be
done for the intercept.

The 28 slopes have a median of .29, while the least squares estimate is
.40. The centroid is (4.5, 2.75) while the median point in (4.5, 2). It is
simply accidental that both intercepts equal .93.

From Sen we have N - 21 (nonzero), n - 8, (1) - 28 and using Kendall's e,
- .054 and U* - 14/28, we calculate

*- { 21 (1) * - 12.12 (3)
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Then, the lower and upper 90% rank confidences values are

1
(21- 1 12.12) 4.44 4 (4)

Ma - (21 + 12.12) - 16.56 - 17 (5)

,Qhers weorounded down on the lower rank and up on the upper rank, &u recom-
mended by Conover. So the 4O ranked slope and the V7th ranked slope gives us
our 900 two-sided confidence interval of the slope; i.e., (-.25, .5).

The following graph provides a comparison of classical least squares re-
gression and the nonparametric methods in fitting the time series data from
our example, It is clear from the graph that a positive trend component
exists in the data; however, the median regression method provides a more con-
sairative trend estimate, Thus, this method is less sensitive to the one out-
hler observation sustained in poeiod seven. This attribute may be of partial
significance in those situations where the trend component effset is used to
compute future average demand values eight or more periods into the future as
is the case with Navy inventory control systems.
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V. RI MIRXMAL DEBIGN, Our overall objective was to evaluate the per-
foruiene of the Kendall "5" trend testacross a broad range of expected do-
mand, variability and trend levels, while maintaining control of key variate
factors to enoure the results reflected intrinsic expected model behavior/
performance. Specifically, we sought to access the ability of the Kendall "S"
statistic to:

$ Detect demand trends.

, Transition effectively between alternating trend/no trend periods,

0 Confirm demand stability in the absence of trend.

* Determine the average lag and delay in identifyinS trend commencement/
trend termination.

To maintain maximum control of the key design factors, we initially chose
simulation. By using simulated data we could specify certain factors and
levels precisely:

* The underlying mean demand of the base population.

* The degree of variability about the mean.

* When a trend was introduced and its level/magnitude.

* The random variable noise level present in the data via the standard
deviation to mean ratio,

These types of factors and levels usually affect the ability to detect the
presence of a trend or to confirm the lack of a trend (demand stability).

Our trend generating function is:

New Mean Demand - (Mean Demand at Beg$nning of Trend]

x (1 + (Period Multiplier z (Period Into Trend)la°•Pime)]

In algebraic symbols this is

y,- yo (1 + (z)0]

The sign of a determines the direction and magnitude of the expected equipment
population increases or decreases. The Beta exponent or period power is used
to adjust the rate of increase or decrease in an item's individual expected
failure rate per installed population.

35



Each item started with a stable demand period - initialization phase -
followed by two periods of trend, first a moderate trend and then a stronger
trend to reflect increasing population and failure rate - a growth phase.
The trend was then turned off to represent the "top of the ramp" steady state
typical middle phase of the system support life cycle. Next we induced a
strong negative trend to reflect the effect of de-installations; i.e., popu.
lation "decline phase". Finally, the above decline was followed by a stable
"final residual support phase" period.

For medium, high, and very high demand, we used:

Periods 1 - 8 nn trend
Periods 9 - 17 U - .05, 1-l.5
Periods 18 - 25 a - .3, .- .8
Periods 26 - 33 no trend
Periods 34 - 41 a - -. 02, -- 1.5
Periods 42 - 50 no trend

The following graph shows the general shape of such a demand activity. We
need to explain next how we induced random variation - noise,
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We generated two random numbers from a uniform distribution on (0,I).

Call them R, and Ra. Then by M. Muller's method, we calculated

V - (-2 log RI) 'z (Co0 2 11 Rg)

for normal deviation on (0.1). To convert V to a normal distributed variable
with mean p and standard deviation a, we used thm transform

V, - V x W + A

SPoisson random variable noise was generated using Martin's method based on
a method suggested by Kahn, Briefly, one begins by generating N uniform ran-
dom numbers Uj and successively multiplying them until the following inequal-
ity is satisfied:

1

Then (N-1) is the desired Poisson random variable value with a mean of np.
When the first random variable number generated satisfies the inequality, then
the Poisson variable is assigned the value zero,

In the previous Section I1, we illustrated the calculation of Kendall's S
(Tau) for a window of (sample size) 8. It is apparent this statistic can be
calculated for other size windows and we felt it necessary to examine the re-
action of this statistic to various size windows. Obviously, a longer window
is not as susceptible to change as a shorter window. As will be seen, we will
take our known generated pattern and utilize various window lengths on such a
time series by dropping off the earliest number in the window and adding on
the latest one. We will do this for window sizes of 4, 6, 8, 10, and 12.

The second factor for which we seek the effects at various levels comes
from scientific judgment and experience in this field of work. We have seen
patterns or the lack of such according to the volume of demand for a part,
Consequently, we have classified demand into five categories or levels: very
low, low, medium, high, and very high, given by:

Demand natfig = Avrage Damane

Very low demand .5 to 4 per year
Low demand 1 per quarter
Medium demand 3 per quarter
High demand 9 per quarter
Very high demand 20 per quarter
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The third factor of concern is demand variability which we need to simu-
late and control. After much analysis of actual data, it was decided to use
for the measure the ratio of the average variability to the average demand,
the standard deviation to mean ratio or coefficient of variation,

The selection of levels for this factor appeared not to be independent of
the levels of the second factor. A sort of Pareto distribution analyais of
over 9000 randomly selected parts gave us the following two-way table:

MariabilitX Level
Uaepd DaviationMaaRilatio

Demand Catseory 1 I MR U M

VL .49 .64 .71 1.00 1.60
LO .40 .70 .90 1.21 1.26
HD .16 .30 .55 .91 1.13
HI .14 .28 .53 .93 1,12
VH1 .14 .28 .53 .93 1.06

VI. VINDINOS - ZUUULTU - RCO)DI•KMATIONI. The 50 various data sets used in
the study each consisted of 50 quarters of demand; that is, for each combina-
tion of demand and variability, a simulated demand data met was generated. In
addition, this was done for Case (1) - a set with three periods of trending/no
trend and Case (2) - a sot without trends (stationary), TABLEs I - III pro.
vide graphs of the simulated demand observation data sets used in the study,
The Kendall "'" test was applied to each successive set of observations in the
window (moving through time) in an attempt to identify trending and nontrend-
ing processes,
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NON-TRENDING DATA SETS
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NORMAL DISTRIBUTION
TRENDING DATA SETS
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POISSON DISTRIBUTED DEMAND

STATIONARY DEMAND TRENDING DEMAND
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For each observation set within the moving window across the 50 data
points, we counted how often the Kendall "8" correctly identified the pro-
mene* of trend and how often it correctly identified the lack of trend; i.e,,
confirmed stability.

The evaluation to be used follows the following example for each window
size across the 50 data points.

ACTUALITY

TREND NO TREND

P TREND 12 1R
3 NO TREND 13 19
D
I TOTAL 25 20
C
T SCORE 48% 95%

We call a Type I error the classifying of actual non-trending as trending
and a Type II error the classifying of trending as nontrending, In the above
table, we predicted 19 of the 20 no trending sitiations which means the pro.
bability of a Type I error is 5%; whereas, of the 25 trending situations we
predicted only 12, thereby having a probability of a Type 11 ervor of 52%.

So our immediate goal is to determine optimal window sizes in order to
minimize Type I and Type II errors. Initially, we set performance goals:

(1) Maintain very high capability to confirm stability for
stationary demand patterns - more than 88% of the time,

(2) Maintain relatively high capability to detect that trend
influence has ceased - more than 80% of the time,

(3) Select window size maximizing trend detection while meeting
(1) and (2).

Practically this led us to minimize Type II errors for a specified Type I
goal, Now in using the Kendall 'S", we tried to hold to cutoff values that
were exceeded about 5%. However, tabular values closest to 5% had to be used.
These are given at the bottom of each column in the following tables.

The following five tables give the percentages that Kendall's "S" achieved
in being correct, Entries that are shadowed appear best for that window size.
For example, look at the table for very high demand, Note the situation ap-
parently improves as you go from right to left and from top to bottom. But it
must be remembered that for rows above the last one, it is best to use a wider
window; i.e,, larger sample size for the time series.
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The reader will note that observations like those in the previous para-

graph are not as easily made for lower demand items. For the low demand
items, it appears we cannot come close to our goal for detecting trend, The

same can be said for the very slow PoIsson case.

The sixth table to follow, "Overall Performance", comprises the five pro-

ceeding tables by washing out window length and sipa/mu categories.
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KENDALL "U" RESULTS

OVMUALL P, 7OIJW"'OZ

T 40 -75% 20 -40% 20 50% 30 -50K

NT 80 -952 80 • 95% 90 - 100% 80 - 90,

ST 88 - 95% 88a • 100 88--100% 85 - 90%

"T"- TRENDING DATA SET

"NT- NONTREDINO BUT PJEVRIUSLY TRENDING

'*ST" - STATIONARY DATA SETS

PEACENT ZXPINTIFZED CORURETLY
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V1I. TOE LAG. The next five pages use the same set of data we used earlier
for high demand, trending and not trending, and low variability, symbolized
HDTR-4. On each computer printout, the 50 demand observations are blocked in
five blocks, as the induced demand goes from no trend to trend (1), from trend
(1) to trend (2), from trend (2) to no trend, from no trend to trend (3), and
finally to no trend. Then, using an S with a small probability - around 7% -
we followed 8 values in an interval and across intervals.

For example, the first page for a window of size 4 shows the five calcu-
lated values of S for the eight values in the beginning no trend period mudi.
cats correctly no trend. On the other hand, starting with period 9 and
through period 17, when we have a trend, the S statistic fails to pick up
trend throughout the entire period. Moreover, for four periods into the third
stage, the S statistic still fails to suggest trend. Finally, at period 22,
the S statistic indicates a trend and correctly predicts through period 25.
We have indicated with a dash (-) when S is incorrect and with a stir (*) when
it is on target, For this particular run of 50 demands, we see nine correct
calls out of a possible 25 for trending. However, out of 22 nontrending
cases, our statistic S is correct 21 times, and no, is 95% correct, or if you
will, has a probability of a Type I error of 5%. On the other hand, our sta-
tistics selected only 36% of trending cases; hence, we face a sample probabi-
lity of a Type II error of 64%.

A similar explanation can be given for the other four cases of window
lengths 6, 8, 10 and 12, It is apparent that winaow size of 6 o0 8 does
better.

This delay or lag puts limitations on successful use of the S statistic
for forecasting as summarized in the chart following the five computer print.
outs.

It seems we are faced with a problem which lies within that general pur-
view described by Bennett and Franklin on page 688 entitled "Choice of Tests
for Non-Randomness".

It will be observed that the sensitivity of the various tests
for nonrandomness of observations depends upon the type of non-
randomness which is present. In cases where this can be anti-
cipated from technical considerations, the appropriate test
may be selected in advance, but, if the choice of tests is
based on an examination of the results, the significance levels
are clearly biased. An obvious alternative, that of subjecting
all data to the same series of tests, is not free from criticism
since many of the tests are not independent, although the degree
of dependence is not yet known. It would appear that without
techn&ical guidance, the best procedure is probably to use a
series of tests, interpreting the significance levels as a general
indication rather than a specific prediction,

We wish to thank John Price of Hershey Foods who in the early stages pro-
grammed for us the Kendall S with the assistance of Brent Burkholder. This
was later taken over by Emerson Evelhock who expanded the work to useful
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graphs. The demand forecast and trend simulation model was developed by CDR
Tom Bunker, SC, USH. Throughout all this, Charla Scheaffer typed and retyped
and stayed the course
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KENDALL'S S STATISTIC
WINDOW - 4

HDTR-4
PERIOD DEM OBS KENDALL'S S PROBABILITY CRITICAL VALUE S-5

1 6
2 10
3 8
4 10 3 0.271
5 8 -2 0.375 NO TREND
6 10 2 0.375
7 5 -3 0.271
8 7 -2 0.375

9 9 - 0 0.625
10. 8 - 4 0.167
11 11 - 4 0.167
12 13 - 4 0.167
13 10 - 2 0.375 TREND (1)
14 17 - 2 0.375
15 19 - 4 .0.167 IV
16 18 - 4 0.167 ACTUALITY
17 21 - 4 0.167 T NT

18 30 - 4 0.167 P T 9 1
19 27 - 4 0.167 R
20 39 - 4 0.167 E NT 16 21
21 42 - 4 0.167 D
22 43 * 6 0.042 TREND (2) 25 22
23 51 * 6 0.042 36% 95%
24 55 * 6 0.042
25 57 * 6 0.042

26 57 5 0.1045
27 53 -1 0.5
28 57 -1 0.5
29 56 -1 0.5
30 59 4 0.167 NO TREND
31 54 -2 0.375
32 56 -1 0.5
33 58 0 0.625

34 52 - 0 0.625
35 52 - -3 0.271
36 47 * -5 0.1045
37 44 * -5 0.1045

38 44 * -5 0.1045 TREND (3)
39 39 * -5 0.1045
40 39 - -4 0.167
41 27 * -5 0.1045

42 31 -3 0.271
43 35 0 0.625
44 28 2 0.375
45 31 -1 0.5
46 29 -2 0.375
47 34 4 0.167 NO TREND
48 28 -2 0.375
49 26 -4 0.167
50 29 -2 0.375
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KENDALL'S S STATISTIC
WINDOW - 6

HDTR-4
PERIOD DEM OBS KENDALL'S S PROBABILITY CRITICAL VALUE S-9

1 6
2 10
3 8
4 10
5 8 NO TREND
6 10 5 0.235
7 5 -5 0.2358 7 -5 0.235

9 9 - -4 0.2675
10 8 - 0 0.559
11 11 - 5 0.235
12 13 * 13 0.0083
13 10 * 9 0.068 TREND (1)
14 17 * 9 0.068
15 19 * 11 0.028 IV
16 18 * 9 0.068 ACTUALITY
17 21 * 11 0.028 T NT

18 30 * 13 0.0083 P T 20 2
19 27 * 11 0.028 R
20 39 * 11 0.028 E NT 5 18
21 42 * 13 0.0083 D
22 43 * 13 0.0083 TREND (2) 25 20
23 51 * 13 0.0083 80% 90%
24 55 * 15 0.0014
25 57 * 15 0.0014

26 57 14 0.00485
27 53 8 0.102
28 57 6 0.1855
29 56 0 0.559
30 59 2 0.4 NO TREND
31 54 0 0.559
32 56 2 0.4
33 58 0 0.559

34 52 - -4 0.2675
35 52 - -8 0.102
36 47 * -8 0.102
37 44 * -12 0.01815

38 44 * -13 0.0083 TREND (3)
39 39 * -13 0.0083
40 39 * -13 0.0083
41 27 * -13 0.0083

42 31 - -11 0.028
43 35 -8 0.102
44 28 -6 0.1855
45 31 -2 0.4
46 29 2 0.4
47 34 0 0.559 NO TREND
48 28 -4 0.2675
49 26 -4 0.2675
50 29 -6 0.1855
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-kEkALLI'.s S STATISTIC
WINDOW - 8

HDTR-4
PERIOD DEM OBS KENDALL'S S PROBABILITY CRITICAL VALUE S-13

1 6
2 10
3 8
4 10
5 8 NO TREND
6 10
7 5
8 7 -4 0.36

9 9 - -8 0.199
10 8 - -4 0.36
11 11 - 2 0.452
12 13 * 13 0.0715
13 10 * 13 0.0715
14 17 * 22 0.0028 TREND (1)
15 19 * 22 0.0028 IV
16 18 * 20 0.0071 ACTUALITY
17 21 * 22 0.0028 T NT

18 30 * 22 0.0028 P T 20 9
19 27 * 22 0.0028 R
20 39 * 24 0.00087 E NT 5 9
21 42 * 24 0.00087 D
22 43 * 24 0.00087 TREND (2) 25 18
23 51 * 26 0.00019 80% 50%
24 55 * 26 0.00019
25 57 * 26 0.00019

26 57 - 27 .0.0001075
27 53 - 21 . 0.00495
28 57 - 19 0.01155
29 56 - 13 0.0715
30 59 - 13. 0.0715 NO TREND
31 54 1 0.5
32 56 -4 0.36
33 58 4 0.36

34 52 - -1 0.5
35 52 - -12 0.089
36 47 * -16 0.031
37 44 * -21 0.00495,
38 44 * -20 0.0071 TREND (3)
39 39 * -24 0.00087
40 39 * -25 0.00053
41 27 * -25 0.00053

42 31 - -24 0.00087
43 35 - -20 0.0071
44 28 - -18 0.016
45 31 - -14 0.054
46 29 -10 0.138 NO TREND
47 34 -1 0.5
48 28 2 0.452
49 26 -12 0.089
50 29 -10 0.138
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KENDALL'S S STATISTIC
WINDOW - 10

HDTR-4
PERIOD DEM OBS KENDALL'S S PROBABILITY CRITICAL VALUE S-18

2 10
3 8
4 10
5 8 NO TREND
6 10
7 5
8 7

9 9
10 8 - -3 0.431 {
11 11 - -1 0.5
12 13 - 13 0.146
13 10 - 13 0.146
14 17 * 25 0.014 TREND (1)
15 19 * 30 0.00345 IV
16 18 * 37 0.00018 ACTUALITY
17 21 * 37 0.00018 T NT

18 30 * 37 0.00018 P T 17 13
19 27 * 37 0.00018 R
20 39 * 37 0.00018 E NT 7 6
21 42 * 39 0.000058 D
22 43 * 41 0.000015 TREND (2) 24 17
23 51 * 41 0.000015 71% 35%
24 55 * 41 0.000015
25 57 * 43 0.0000028

26 57 - 42 0.0000089
27 53 - 36 0.000325
28 57 - 36 0.000325
29 56 - 30 0.00345
30 59 - 30 0.00345 NO TREND
31 54 - 18 0.066
32 56 9 0.242
33 58 7 0.3

34 52 - -7 0.3
35 52 - -12 0.168
36 47 * -17 0.078
37 44 * -29 0.0046
38 44 * -32 0.0017 TREND (3)
39 39 * -37 0.00018
40 39 * -36 0.000325
41 27 * -40 0.0000365

42 31 - -40 0.0000365
43 35 - -36 0.000325
44 28 - -35 0.00047
45 31 - -30 0.00345
46 29 - -26 0.01115 NO TREND
47 34 -17 0.078
48 28 -14 0.127
49 26 -15 0.108
50 29 -6 0.332
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KENDALL'S S STATISTIC
WINDOW - 12

HDTR-4
PERIOD DEM OBS KENDALL'S S PROBABILITY CRITICAL VALUE S-22

1 6
2 10
3 8
4 10
5 8 NO TREND
6 10
7 5
8 7

9 9
10 8
11 ii
12 13 18 0.125
13 10 13 0.21 TREND (1)
14 17 * 28 0.031
15 19 * 34 0.01 IV
16 18 * 44 0.001 ACTUALITY
17 21 * 49 0 T NT

18 30 * 58 0 P T 18 17
19 27 * 56 0 R
20 39 * 56 0 E NT 4 0
21 42 * 58 0 D
22 43 * 58 0 TREND (2) 22 17
23 51 * 60 0 82% 0%
24 55 * 62 0
25 57 * 62 0

26 57 - 61 0
27 53 - 57 0
28 57 - 55 0
29 56 - 49 0
30 59 - 51 0 NO TREND
31 54 - 39 0.0035

32 56 - 30 0.022
33 58 - 28 0.031

34 52 8 0.319
35 52 -13 0.21
36 47 * -27 0.037
37 44 * -33 0.013
38 44 * -37 0.0055 TREND (3)
39 39 * -49 0

40 39 * -52 0
41 27 * -57 0

42 31 - -55 0
43 35 - -55 0
44 28 - -55 0
45 31 - -50 0
46 29 - -47 0 NO TREND
47 34 - -37 0.0055
48 28 - .34 0.01
49 26 - -35 0.0085
50 29 - -26 0.043
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Abrams Tank Inspect And Repair Only As Necessary (IRON)
Economic Model

1. TntrfuA~iptnf

On 22 March 1989 Lieutenant General Jimmy D. Ross the Deputy
Chief of Staff for Logistics proposed an initiative to establish
a point in the life of an Abrams tank when a depot level inspect
and repair only as necessary (IRON) program may be appropriate to
extend the service life of the tank. He recommended that TACOM
develop an Economic Model to provide the cost-benefit of this
IRON program. This model should predict the point in time when a
tank becomes an IRON candidate. As proof of the benefit, the
model must predict the extension of service life and the reduc-
tion of operating and sustainment costs through this remaining
life. Finally, the results should be validated in a hardware
demonstration.

In response to this request TACOM and PM Abrams have devel-
oped the Reliability Centered IRON (RCIRON) program. (The RCIRON
program differs from the IRON program in that only certain
candidate components are inspected and repaired.) For the purpose
of a validation test 60 Ml!P tanks were transferred from Germany
to the National Training center (NTC), Fort Irwin, California.
Fourteen of these tanks were selected for the RCIRON demonstra-
tion. These tanks were sent to Anniston in December 1989 where
the RCIRON inspection was performed. These 60 tanks are currently
being tested at the NTC. The goal of the RCIRON program is
"preventive correction of impending failure" which can

Decrease the maintenance burden on field units.
Extend "combat life"
Decrease field Operating and Support (O&S) costs.

Our problem is to develop an optimum maintenance policy for
the implementation of the RCIRON for the entire Ml/MlAl fleet.
This requires the establishment of periodic inspections for a
system composed of many parts, each of which has its own failure
rate and its own required frequency of repair. Since each item
has its own expected time between failures, each will have its
own optimum time for periodic inspection.

To maintain a system at the desired level of operation a
regular routine of test and inspection must be established. This
type of inspection is normally performed at the organisational
level. The maintenance organization may also perform preventive
periodic inspections and repairs on a scheduled list of items or
subsystems. There are, however, some parts of the system which
may require inspection and repair at a higher echelon, such as a
depot. It is assumed that by scheduling the inspection of item a
little before the expected failure, the number of failures and
the costs of unscheduled downtime can be reduced enough to offset
the cost of scheduled maintenance. This is the basis of the
RCIRON program. Fifty parts have been identified as candidates
for the RCIRON Program. If there is evidence of failure or
deterioration at the time of inspection these parts will be
repaired or replaced.
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2.0 Replaement dels
A large number of the models reviewed during this study

develop the optimum replacement time for a single type of part or
component. A model proposed by Samuel B, Richaond was suggested
as an economic useful life model for the RCIRON program.
The model equation is
were

Tf (T)[ tf ( t)dt*Tf ( t )-p. S 3

0

T a the preventive maintenance period
p a probability of failure before time T
f(t) m cumulative probability of failure
A a cost of overhaul after failure
3 a cost overhaul before failure

This model considers that if the cost a scheduled replacement is
leos than the cost of a field replacement then the scheduled
replacement is cost-effective. The model assumes that an item
will always be replaced at RCIRON inspection, and the main cost
will be the downtime required to perform the maintenance. The
nature of the RCIRON process is to inspect a component and
replace it only if necessary. This type of model does not meet
the requirements of the RCZRON program.

3.0 Dntariorating Markay Procems Maodl
A nmor realistic model is presented by A. S. Goldman and T.

B. Slattery in their 1964 book Maintainability. With some modifi-
cation this model can be adapted for the RC-IRON program. This
model assumes that periodic inspections will occur at scheduled
periods of time, silos or rounds. At the time of these periodic
inspections there is a probability that the item will have
deteriorated and should be replaced. There also exists a proba-
bility that the item will have failed prior to the scheduled
inspection. Associated with these inspections and replacements
are incremental costs which contribute to the total maintenance
costs.
3.1 M~adl Ragtix~amants
Thke goal of a maintenance model is to develop an optimum

maintenance policy. In order to develop a realistic model and to
optimise the system retain certain system

characteristics must be determined.
These characteristics are,

For each itema
1. Deterioration probability.
2. Probability of failure during deteriorated state.
3. Failure probability during normal state.
4. Average hours for preventive inspection.
5. Average hours for preventive repair.
6. Average elapsed time for field diagnosis and repair
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7. Average hours for field repair

ror the systems
1. Cost of setting up for preventive inspection.
2. Depot costs per hour,
3. Field costs per hour.
4. Cost of downtime

When this information is available the mathematical model
can be developed. The objective is to develop a method of
applying mathematics and economiA theory to preventive
maintenance problems. The method described applies only to
preventive maintenance situation where the failure pattern
is predictable. This pattern is generally associated with
wear out failure distributions.

3,2 Wothatial oal
The periodic inspection model can be represented by the

following expressions

Whores
T s Scheduled inspection period. (Time, silos,

rounds)
i * ith item to be inspected.
Ci a Unit cost of maintenance and repair of the

ith item of the system.
Cli m Cost of periodic inspection of the ith item.
C21 m Cost of preventive repair of the ith item.
C31 w Cost of field failure of the ith item.
Pi a Probability of repair of ith item.
El a Expected number of failures between periodic

inspections
The Goldnan/Slatterly (0/8) model considers that the

main cost of maintenance is tha couL ot luml. duwiili•m. ITilti
is also the main cost driver in the AMSAA model. The AMSAA
model also includoe the cost of the average hours required
to replace the item. The G/S model also includes hours, but
in a different way. The Gf/ model considers hours more as
an overhead factor. ror the PC-IRON program the AMSAA
method will be used.
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The cost of inspection and repair can then be written aim

Vheroe

CIL w Cost of periodic inspection of the ith item.
C21 a Cost of preventive repair of the ith item.
C3M m Cost of field failure of the ith item.
CD a Cost of downtime. ($1781/day).
Ili * Downtime due to inspection.
CIi * Cost/hour of inspectors.
TIlL M Hours required for inspection.
D21 * Downtime due to depot repair.
CR21 a Cost/hour of depot repair.($46.o9/Hr).
.TR21 Hours required for depot repair.
DUi * Downtime due to field repair.
CR31 * Cost/hour of field repair.($104/Hr)
TR$U u Hours required for field repair.

3.3 Total fist*em cost

The total systems cost is made up of the cost of
setting up the inspection process, the overhead costs of
maintaining the inspection and repair facility and the sum
of all the part inspection and repair costs. If the
inspection and repair facility was dedicated to the MI
program the total overhead costs would have to be included
in the cost of preventive Lnapoction and repair. The depots
however are funded separately and the facility cost can be
left out of the cost equation. The expression for total
system cost can be written ass

Were's

C * Total System Codt
Co Cost of setting up inspection
Ci * Inspection and repair costs of the ith item.
T - Scheduled inspection period. (Time, miles,

rounds)
3.4 Failur. and Deterioration Probabjility

In order for the RC-IRON program to be successful
items must be replaced before they have failed. One of the
goals of the RC-IRON program is to develop methods of
detecting the degree of deterioration of the iteas
inspected. When this has been done an item will be in one
of three states at the end of a time interval. The action
taken will depend on whic' state the item in in at the time
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of inspection. The state and actions taken are shown
in Table 1.

Stato of gm& Akaeion T&akon

1. Good None.
2. Deteriorated Repair at next scheduled

inspection.
3. failed Repair immediately.

The data currently available from Sample Data Collection
(SDC) provides an estimate of the probability that an item
has either failed or is in good condition. This can be
expressed ass

R*.-I

Wheroe
N - e3O(-exe')

and
alpha and B 0 parameters of Weibull distribution.

t * tien, miles or rounds.
R * Reliability.
0 P ?robability of a failure.

A model of the RCIRON process must include a third

probability and the state of the item can be expressed ast

p I + p 2 + p 3 a1

Whores

p I a probability that item is in good condition.
p 2 m probability that itom is in deteriorated state.
p3a probability that item is in a failed state.

The method used to solve for the failure and deterioration
probabilities in the GAS model is a deteriorating Markov
process. for a given interval of time Y each item can be
characterized by the probabilities pi,j that it starts in
the time interval in state i and ends in state J. As an
example pll is the probability that the item remains in the
good condition through the interval and p1,3 is the
probability that item fails during the time period. These
probabilities can be arranged in a matrix as a special form
of a Markov process. This matrix is known as the transition
matrix.
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Arranged in a matrix these probabilities arot

nZACJNM(*) 0 ' .haA

The process which can be dscrLibod in this manner is a
special case of a Karkov chain. The probabilities that an
item will be in the ith state at the end of the n~lth tine
interval are given by

pia () 18(M) luips(a) 0 A's pi~ai ,Da2. pa

Which can be abbreviated as

CPi(n)] Cp1J) * (Pi~as))]

Since the iton is assumed to be good at the beginning the
condition for the it*e at the start can be written an

CPI(O}] a 11,0,0]

The condition of the ite* ateor n transitions can then be
written as

MRoll] aPt(O)](pi)n

If T is the period between preventive inspections and i is
the period of transition the number of periods between
inspections is equal to

aT/ T

The number of preventive repairs during the life of the
tank would then be equal to

R a p12 x TI / T
Were

Pi - number of preventive repairs
p12 * probability of transition to the

deterioration state.
TI * Useful life(time,aileu,rounds)
T * Period between inspections

The expected number of failures can be computed using the
expression
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4, Lm.m •annienm

A mJor area of concern is the applicability of the deteri-
orating Karkov to a system were the time between
inspections in large. Most applications of this .00o1

require that the time i should be short, enough so that only
one change of state is likely but should be sufficiently
long so that a repair could be done in i time. Another
problem is the use of a constant transition matrix
regardless of the age of the system. Theme factors do not
affect the validity of the basic model but limit the
usefulness of the methods of calculating the failure and
deterioration probabilities.

The model as presented represents a simplified solution to
the preventive maintenance problem and presents the basics
involved. There is very little data available on the
deterioration rate of MI components. It is hoped that the
results of the RCIROK will provide some clues as to which
components exhibit detorioration. Without this data the
model given is of little practical value. The example,
however, serves to illustrate the elements involved in a
more general treatment of the RC-IRON problem,

An extensive literature search failed to turn up an analyt-
ical model that satisfies all the requirements of the
RC-ZRON process. To over come this and to develop, an idea
of how the system would preform it was decided to develop a
simulation model.

5. Itmulatian Haael

The data required by a simulation model is the sase as that
used in the Markov process model. The input requirements
for the RCIRON model listed in paragraph 2.2 will provide
the information necessary for a simulation model.

ror each item the following parameters are required:

1. Milos to deterioration w TL
2. Miles to failure during deteriorated state a Dl
3. Miles to failure during normal state m Ri
4. Average hours for preventive inspection a DTI1
5. Average hours for preventive repair a RTDI
6. Average down time at depot a DTDi
7. Average down time for field diagnosis and

repair a DThi
9. Average hours for field repair RTFI
10. Miles at next failure = NTMA
11. Miles at next deterioration a WRJi
12. Cost of preventive inspection a INSPCi

For the systent

1. Cost of setting up for preventive inspection -INSUP
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2. Depot repair costs per hour a 046.69
3. Field repair costs per hour a $104.00
4. Cost of downtime a $1784.00
5. Inapection schedule (miles) a INSPECT
6. Miles at next inspection a NEXTINSP
7. Total vehicle mileage a THILES
S. Vehicle life a 20 years.
9. Average annual mileage a Y¥ILES
10. LIFE - 20*YMILES

A component will be in either of three etatset

1. Operational
2. Deteriorated
3. Failed

If a component fails it is repaired and
replaced immediately and returned to the operational state.
If a component is in the deteriorated state it remains in
that state until the next scheduled inspection. Each
component can remain in the deteriorated state for a
limited number of miles. If the deterioration
miles plus the deterioration period is lees than the miles
for the next inspection the part fails and is repaired or
replaced. The simulation begins by calculating the miles to
the next failure and the next change to the doterioartion
state. This is represented bys

NT1,1 a Ti
NR2,l a Ri

The times to failure are c;•omputed using a Weibull distribu-
tion. The expression for this calculation is given &as

2 n. EXP(LOG(LOG(I/(I-RND)))-LOG(ALPHAI)/BETAI)

where

ALPHA is the scale parameter
BETA is the shape parameter
RND is a random uniform deviate

The time to deterioration and the duration of the
deteriorated state are not well known. Little or no data
has boon collected showing those factors. In order to r u n
the model assumptions have boon made to generate t h o
deterioration time and dur!ation of the deteriorated state.
The first assumption is that the time for a component to
enter the deteriorated utate is less than the time to
failure. Components are likely to deteriorate before they
fail. The time spent in the deteriorated state would depend
on a variety of maintenance factors. The deterioration
could be so subtle that the tank creow ay not realize that
a problem exists. Other deterioration would be so obvious
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that the crew would repair or replace the component after a
very short deterioration period, ]for the sake of
demonstrating the model it is assumed that the
deterioration distribution is also a Weibull distribution
with a scale parameter 2 times greater than the ALPHA of
the failure distribution. The expression for the time to
deterioration is$

Tjtexp( log( log( 1 - 1) ).log( Ma
I-raid i

The life of the tank is assumed to be twenty years and the
average yearly mileage in about 1000 miles. It is also
assumed that a deteriorated component would not go
undetected for 6 months or 500 miles. The time for a
component to remain in the deteriorated state Ae the
difference between the failure time and the deterioration
time.

The rules for failing or passing inspection areo

1. 1f NTIA and U2ih < NEXTINIP then the component will fail
and THILES will be equal to either NTIi or NR, which ever
is the smallest and a new HTIi and a new NR3,1 will be
calculated &as

NT2,i w THILES + Ti
NR2,L w TMZLES + Ri

2. If NTl,i > NEXTINSF and NRIi < NEXTINOP then the
component will fail at the scheduled inspection and b e
repaired or replaced. THILIS will be set equal to NWXTINSP
and a new NT,1I and a new NRJ,i will be calculated ast

NT2,i a THILES + Ti
3R2,i m THILES + Ri

THILES w NEXTINS?

Then a new NEXTINSP will be valculated ass

NEXTINSP m KEXTINSP * INSPECT

3. If NTI,A < NEXTINSP and NRli > NEXTINSP then the
component will fail and be replaced imediLately. THILES
will be sot equal to NTI,i and a new NTJ,i and a new NRj,i
"will be calculated ass

NT2,i - TMILES + Ti
WR2,i - THILES + Ri
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If WT2,i ) NEXTIKSP thenm

THILES a NEXTINSP

And a new NEXTZNSP will be calculated as.

NEXTINSP a NEXTINSP + INSPECT
At each step in the calculation the cost associated with
the inspection, field and depot repair are accumulated
using the oxproeseLonsi

MCOSTM a MCOSTi * DTri +$1764 + RFTi * $104

RCOSTi m RCOSTi * DTDL 4$1784 + RTD± * $104

ICOSTi a ICOSTi +INSPCi

The iteration continues until THILS >a LIVE. After each
run the total cost of maintenance for the vehicle life is
calculated and printed in a file for further analysis. The
scheduled miles between inepections is incrementod and the
simulation is repeated until the scheduled maintenance
period is equal to the life of the vehicle.

6. Conalusla..s

Preliminary runs of the model were made using various
deterioration factors and inapoction tines from 1000
miles to 20000 miles. The results obtained from
running the model were disappointing. The model did
not demonstrate that there was any advantage to the
RCIRON process. Since we were dealing with an
unproven model uasing fictitious data we decided to
wait until the data from Anniston Depot and the tests
at the NTC were available before presenting the
results obtained by running the model,

The data obtained from Anniston did not provide us with
any additional estimates of deterioration times.

The data from the tests at NTC however were very
revealing. The tests at NTC wore performed by three
different organizations. Each organization was assigned to
NTC for about two weeks during which tims it was planned
that the tanks w@ould travel about 300 miles. Each of theme
periods is called a rotation. During the first rotation the
raw data showed that RCIROH tanks had a mean miles between
maintenance actions (MMBMA) of almost twJ,oe that of the
aontrol tanks.

There were several sources of variation affecting the
results of the tests. The primary source of variation was
the differences between the RCIRON and the control tanks.
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The other known souraes are the difference between
rotations and the fact that each tank was driven a
different number of miles. In order to determine the degree
of variation between the RCIRON tanks and the control tanks
the other sources of variation must be removed.

Several statistical test were performed to detormine the
degree of the RCIRON tanks and the control tanks. The
difference between the two sample during rotation #1 if
very significant, The difference during the other two
rotations is such loss significant.

During. rotation #3 the test show that we can be more
than 90% confident that the two sample are the same.. Freo
this we can conclude that the benefit of the RCTRON process
is dissipated within the first 1000 silos after completion.
These results are similar to those of the simulation model.
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A Model for Optimally
Reducing Uncertainty

Andrew Anderson Thompson III
Ballistic Research Laboratory

Abstract
This paper presents a model that can be used for the optimal reduc-

tion of uncertainty. There are three major components of the model. An
a priori surface used to describe the original state of the world represents
the measure that is to be minimized. A function representing the reduc-
tion of the measure as a function of the resource needs to be supplied,
Based on these two functions a surface describing the optimal allocation
of the resource can be derived.

Introduction
This paper presents a model that can be used for the optimal reduc-

tion of uncertainty. The components of the model will be presented with
some examples of their interactions and then several successful interpre-
tations of the model will be discussed. The paper concludes by suggesting
some possible Interpretations of the model. Hopefully, the reader will be
able to find some useful interpretations of this model.

There are three major components of the model. An a priori surface
used to describe the original state of the world represents the measure
that is to be minimized. A function representing the reduction of the
measure as a function of the resource needs to be supplied. Based on
these two functions a surface describing the optimal allocation of the
resource can be derived.

Uncertainty Surface
The uncertainty function represents the distribution of the attribute

that is to be minimized. In the case of a lifeboat, a bivariate normal distri-
bution with a variance dependent on time provides a useful realization of
the uncertainty function as the probable unknown location. In many cases
the uncertainty will be based on odds and thus will be a likelihood surface,

Information Function
The information function reduces the uncertainty as a function of the

resource applied. This is the mechanism that transfers the measure of the
uncertainty function to a discrete category representing gain. This gain
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can be thought of as knowledge. A desirable property to require is that
the remaining uncertainty at a point is the same for two applications of
resource to a point and for an amount of resource equal to the sum of the
two but only applied once. Mathematically, the following property is
required

f (l(p)r 1 +r2)-f(f (1(p)'r1z)P2)'

In the above equation, l(p) represents the likelihood or uncertainty at
a point and r represents an amount of resource. A function that has this
property is the exponential function. Using the exponential function as the
information function and w(p) to represent the amount of reduction at a
given point the amount of uncertainty remaining can be represented as

The amount transferred to expected information is

Optimal Resource Surface
Koopman (1979) presents a theorem, based on methods used by J.

Willard Gibbs in thermodynamics, to define the properties of a likelihood
surface after an optimal resource allocation is completed. After an
optimal allocation, the likelihood density will have equal values in the area
of allocation and be less in the other areas. Performing an optimal alloca-
tion amounts to passing a plane, that is parallel to the independent vari-
ables through the target likelihood density so that the mass above the
plane is equal to the available resource. An optimal allocation divides the
potential area into an area of resource application and an area to be
ignored. In the area of allocation, the effort expended at each location will
be proportional to the amount of likelihood mass that is above the "cutoff'
plane. One way to visualize this is to consider the change in the gain of
information, and always apply resource to the regions associated with the
largest gains. First consider

(9-I (p)(1-e'w (P)r)l .0 m l(p)w(p)

Imagine a gridlike partition of I (p)w (p).
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Allocate resource to the cells with the largest value until they hit the level

of the next lower level.

Repeat this until all the resource is used.

The result is a surface that is flat in the region of uncertainty reduction.
One can imagine that the grid becomes the set of rational numbers.

Example 1.
As an illustration of the above ideas, three methods for solving a single
problem will be discussed. Consider a 3x3 matrix, where the value in cell
(ij) [I and j running from 1 to 3] represents the uncertainty associated
with cell (ij).

i-l 0.20 0.10 0.05
=2 0.10 0.30 0.05
-3 0.05 0.10 0.05

j =1 -2 -3

The probability associated with the region corresponding to cell (2,2)
is 0.3. Assume there is a fifty-percent reduction in the probability if a unit
of resource is applied to a cell. Fifty percent is transfered to the catagory
information gain. What sort of resource allocation will maximize the pro-
bability for twenty units of resource?
1. Method One: Proceed sequentially using a maximum-likelihood
method; apply each unit to the area with the highest probability. After
each unit is applied, replace the original cell [call it C] with "C (1-DF)," or,
here, (0.3 x 1/2 =) 0.15. (That is, some of the probability is moved to the
category of knowledge.) For the allocation of the twenty rounds, the pro-
cedure would follow this pattern:

Step 1: Ch,'ose cell (2,2), since it ontains the greatest probability.
Replace 0.3 with (0.5 x 0.3 -) 0.15.

Step 2: Choose cell (1,1), since it now contains the greatest
probability.
Replace 0.2 with (0.5 x 0.2 =) 0.1.
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Step 3: Choose cell (2,2), since it now contains the greatest
probability.
Replace 0.15 with (0.5 x 0.15 =) 0.075

Now several cells have the equal maximum probability of 0.10. Here,
one can randomly choose any one of those cells. (When this possibility
exists, one car only speak of "an" optimal solution.)

Method One not only indicates the number of units to be applied to
each cell but also indicates the best sequence for delivery. This straight-
forward method can be used when one has a discrete uncertainty surface.
2. Method Two. This method introduces the techniques used when one
has a continuous uncertainty surface. The method is to find the amount
of resource to apply to the highest-valued cell to reduce it to the level of
the cell containing the next lower value. Then apply the resource to both
of those cells until level of the next lower cell is reached. In this situation,
we assume that the effort is also continuous (i.e., that the resource can be
applied in fractional amounts). This assumption is necessary in order to
calculate the optimal-resource surface.

If a unit is applied to cell (2,2), then the probability remaining would
be 0.15. Since this value is lower than 0.2, the reduction has gone too far.
The proper amount to apply to cell (2,2) is a fractional amount, enough to
have reduced it to 0.2 and no lower. Thus:

Step 1: Reduce the value of cell (2,2) to the value of cell (1,1)

0.2 = 0.3*0.5**n - n = 0.585.

Step 2: Find the amount of effort that will reduce 0.2 to 0.1

0.1 = 0.2'0.5'*n--, n w 1

Step 3: Find the amount of effort that will reduce 0.1 to 0.05

0.05 - 0.1*0.5**n-4 n = 1

The derivation thus far has not made use of the fact that the resource
is limited. In this continuous case, the optimal allocation of ammunition
can now be derived by means of an "Effort Matrix" expressed in terms of
"E" -- the "minimal-effort value." The value in each cell represents the
effort or resource to be applied to the corresponding area.

For the Effort Matrix corresponding to the given problem, each of
the cells with probabilities of 0.05 has some undetermined amount of
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effort E in it. The cells corresponding to the probabilty cells with entries
of 0.1 have one full unit more of effort in them, so they carry the value
I+ E. The cell corresponding to the value of 0.2 has yet one more unit of
effort, so its entry is 2+ E. Finally, the cell with a value of 0.3 has an addi-
tional 0.58 units of effort (rounded to two decimal places). Its entry is
2.58+E.

2+E 1+E E
1 + E 2.58 + E E
E I+E E

The total effort expended is to be equal to twenty so by summing the
cells of the matrix and setting the total equal to twenty, we can find the
optimal effort for each cell:

20 - 9E + 7.58
E - 1.38

Thus, where the resource can be applied continuously, the optimal solu-
tion is:

3.38 2.38 1.38
2.38 3.96 1.38
1.38 2.38 1.38

Returning to the original case of 20 integral units, if the resource
could not be subdivided, it would be necessary to enter integer numbers
of rounds in each cell. As an approximation, we would round off the
values in the cells to integer amounts and make further adjustments to
ensure that the sum is twenty. One plausible solution in this case is

3 3 1
3 4 1
1 3 1

3. Method Three. This method uses the ideas of Koopman; Gibbs (1928)
originally applied these ideas to a physics problem. Koopman derives two
formulas that can be used to find the optimal resource surface. The first
formula is used to find the area to apply resource. After this area has
been defined, the second formula is used to determine the amount to
apply to each point. This method is valid when the TLD is continuous
and is a formalization of the technique used in Method 2. The equations
used are:

0 = If [(In (p(x,y) w(x,y)) - ln A)/w(x,y)] dxdy (1)
A
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and

O(xv) -'- - In ['P (X%)W](X&)(2)
w(Xy) An

4 is the total effort ý (x,y) is the resource density at xy

p(xy) is the probability at x~y

A is the height of the cut off plane

A is the area of application

e'w(2I) is the residual probability located at (xy).
Equation 1 divides the uncertainty region into the two areas based on

the amount of resource available. Equation 2 is used to determine the
allocation at each point. As applied to the current example the steps are
as follows:
First, express the residual probability as an exponential. As we apply
more resource to a specific region the returns on each unit diminish in
proportion to the probability that remains in that region. This diminishing
rate of return is captured by the exponential function.
Second, solve Equation I for A,. A is the height of the plane that cuts the
uncertainty surface at the level appropriate for that amount of effort.
(Note that integration can be replaced by summation for this discrete
case).
Third, find the amount of effort at each of the nine points using Equation
2.
Fourth, find an integer solution.
Implementing these steps yields the following:

e'-W(X'j) =p --+ w (xv) - -In. 5 = .6931

Note that w(x,y) is constant and can be replaced by w.
9

20 - r, (In (pi * w) - In ,A)/w

i'l

20w -E Inpi w
In A = -+k -A .0133

-9
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1 I

Using~ - In 1 we get the optimal effort matrix
w

3.3819 2.3818 1.3817
2.3818 3.9669 1.3817
1.3817 2.3818 1.3817

Integerization off this solution yields the same result as the previous exam-
ple. Note that this method will work for a continuous uncertainty surface.
Next an example using continuous resource on the bivarite normal distri-
bution is presented. It is hoped that this example will serve to clarify all
the above ideas.

Bivariate Normal
In the continuous case Koopman's result guides us in finding the value for
the cutoff plane for a given amount of effort. In using this equation note
that the resource surface must be greater than zero at all points; we can-
not use negative amounts of resource at an unlikely area and counterbal-
ance this by applying more resource to more probable area. The value z
- In (A) is the cutoff plane of the surface In (p(xy) w(x,y)). All regions
where In (p(x,y) w) < In (A) are ignored. Assuming w(x,y) - w and In (A)
can be expressed as In (p (x 'v ') w) Equation I can be expressed as

ID ff[Iln (p(x,y) w) - In (p(x ,y') w)]dxdy/w. (3)

A

This can be rewritten as

w 4 = ff [in (p(x,y)) + In w - ln(p(x ",y I))n w ]dxdy (4)
A

= ff (In p(x,y) - In p(x ",y "))dxdy
A

In this situation Equation 4 shows In A is inversely related to w. Equation
2 can be written as

1
(xv) Y - (lnp (x) -lnp (x ")1. (5)

W

This indicates the amount of resource applied to each point is propor-
tional to the difference between the distribution and the cutoff plane.
These ideas are applied to the following problem.
Example 2:
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Given a circular normal probability surface and constant information
function, describe the optimal resource surface. The uncertainty is
described by

2 1 2 or2
p(xy) = (2 ro)" e

Taking the natural log we have

In p (x v ) m In (2 -a2)'1 + -(x 2 +y 2)

2

Rewriting Equation 1 for this problem we have
1" 21 "(x2+y2)

S=ff [In (2 wr 2)*1 + - + Inw -In \dxdy/w.

A 2 ar
The integrand is the equation of a concave downward parabaloid.

Next change to polar coordinates

2WA 2w 0 a f f [In (2 ir o;). + 2 ;+ In w- In \1RdRd• (6)

00 2o
The value in brackets as previously mentioned must be greater or equal to
zero. In terms of A we will use the following expression for In A

21.A 2

InA = In (2 7r 2).- + + In w.
22

Equation 6 can be written
wI'- fln22)1+ -+ lnw-ln(2no)" --- in

00 2o 2]

00 12 2 a
2w A .- R 3 A 2

= [ + dO
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2.4 •.4 4w 2
2 7A 7r-~A 4  4 4w tr

0,2 4,28o 4o
.1 1/2

-.r(2 r o)* 1 e 0 -i W,

The optimal resource surface will be zero outside the circle of radius A;
within the circle the allocation is given by Equation 2 which simplifies to

22 2
(A .R )/(w2oa)

The information gain for this example can be found by the following
method. Note from Figure I that P(information) is the volume bound by
the curve p(RS) and the cutoff plane z = A or the difference between
Figure la and lb. The volume under the circular normal distribution is
given by

.R 2

i.-e 2

This volume contains a cylinder of radius A and height p(A); so we must
remove this volume from the previous value. The volume of the cylinder
is

1/2 "1(__W

irA 2h = 21ro" - e

so the expression for p(information) is

1- ( 1 (OW )1/2) e W (7)

Next we extend this problem to quantify the relationship between
intelligence or reduced variance of the uncertainty distribution and
increasing the amount of resource. Assume a circular normal density 'ith
sigma of 100. Let w = .5 (the probability of missing the target is e'. or
.61, and suppose there are ten units of resource, each unit having an
effective radius of thirty meters. Notice that both the standard deviation
of the uncertainty and the total amount of effort need to be in the same
units; thus the total effort needs to be an area. For this example the total
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effort available (4) is the qumber of resource units multiplied by the area
each covers or 10 * " * 30". From Equation 7 above the probability of hit
is

1/2 4_(4500)1'/

1 + 1 e 100 .= 146

If we instead use 20 units, the information gain is .246; however, if we had
.reduced the target location error by fifty percent so sigma was '50 for 10
units the p(information) would be .388. A reduction in sigma to 70
increases the probability of information to the same level as doubling the
amount of resource. These observations give guidelines for analysis of the
benefits of intelligence versus increasing the resource allocation.

Theory of Search
Koopman worked for the Navy during WWII and directed his energies
toward solving problems associated with getting convoys across the Atlan-
tic, finding submarines, and directing maritime rescue operations. During
the course of his work he developed a formal theory of search. The model
presei-ted by this paper is a slight generalization of search theory. In
order to describe the a priori location density of a target, knowledge of
the situation based on past experience or functional relationships must
suffice. For maritime rescue operations, the bivarite normal distribution
proved to be an adequate model. The detection function was based on
models of human observation from airplanes and several adequate
glimpse models were derived. Using these functions it was posible to allo-
cate search time judisously. There was a major problem getting convoys
across the Atlantic. Using destroyer escort time as a resource to minimize
the probability of attack by a submarine and reasoning about submarine
tactics to build up probability of attack surfaces; it was possible for Koop-
man and his associates to make reasonable allocations of destroyer time
and substantially decrease the sucessful the effects of the submarines.

Artillery Effectiveness
Problems associated with increasing the effectiveness of indirect artillery
fire have been addressed by Sandmeyer(1986). Targeting errors, target
size, and errors associated with a round need to be considered.
In order to see the connection between theory of search problems and
artillery problems, think of an artillery round as the detection function.
The round searches for the target. For a given number of rounds, the goal
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is to diminish the target likelihood density as muCh as possible. The
expected damage of a round is the convolution of the precision errors and
the damage function of the round. For artillery systems this convolution
will usually involve the bivariate normal distribution and the von Neuman
- Carlton damage function. The target likelihood density is the convolu-
tion of the target area, the target location errors, and the artillery mean
point of impact errors. The latter two are both assumed to be bivariate
normal distributions, while the target area function is usually a rectangle
whose height is the reciprocal of the target area. The optimal amount of
target damage can be found by using these two convoluted functions and
Koopman's theorem.

Our total effort is packaged into a discrete number of artillery
rounds, or expected damage functions, each of which have the same area
effects. It is not possible to apply the indicated optimal effort or damage
to each point; thus, it is impossible to achieve the optimal amount of dam-
age. This optimal damage surface will serve as an upper bound on perfor-
mance.

Recalling that the target likelihood density Is broken into a part to be
searched and an area to be ignored, several theoretical observations can
be made. First, the amount of damage occurring outside the optimal area
is wasted effort in the sense that it could be applied more effectively else.
where. Next, damage exceeding that indicated by the cutoff plane in the
search area is wasted effort. The best approach is to try to approximate
the optimal effort surface by the summation of translated expected dam-
age functions. In most cases this will result in a target likelihood density
with ripples near the level of the optimal cutoff plane.

Richard Sandmeyer (1986) of the AMSAA developed a technique to
optimally approximate the optimal effort surface. There are three major
sections to his method.
1. Calculate the upper bound and optimal effort surface.
2. Calculate an approximate solution by using either integer program-

ming or least squares techniques on a restricted domain. The res-
tricted domain consists of all the points defined by the intersections of
grid that includes the optimal effort surface.

3. Starting with the previous solution, use a steepest descent technique
to arrive at the solution.
The theoretic upper bound is found based on Koopman's theorem.

The optimal effort surface can be calculated functionally for each point.
In finding this surface, it is assumed there are no restrictions on the effort
applied at each point.
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Step two of Sandmeyer's method involves finding a close approxima-
tion of the best set of translated damage functions. This is accomplished
by looking at a discrete number of points and optimizing the approxima-
tion over this set.

The third step of his method starts with the result of step two and
allows the aimpoints to drift into the positions of the best approximation.
Computationally the third step is the most expensive. Happily, for most
situations the result of the second step Is within a few percent of the upper
bound. This method requires too much CPU time to be used in the field.
As Sandmeyer has already suggested the performance of this method can
be used to evaluate the effectiveness of other methods. It is clear that the
approach developed by Sandmeyer is not limited to solving problems
associated with artillery.

Medical Diagnosis
In this situtation, an unknown desease presents itself through a subject or
patient as a set of symptoms. The goal is to identify the desease or short
of that find a treatment that gets rid of the symptoms. The parameter
space is the set of all known medical ailments; the goal is to reduce the
uncertainty as to the patient's condition in some optimal fashion. The
resource available to the physician is money, which is translated into
information via various microbiological and chemical tests and through
response to particular medical treatments. An a priori likelihood surface
can be built up from existing desease frequencies, knowledge of the
patient, and risk factors. After this a sequence of treatment and testing
can be developed that would be optimal in reducing the uncertainty sur-
face associated with the patient. This would give both the patient and the
physician a formal method that explains a particular course of action.

Funding Problems
This class of problems arise when there is a limited amount of resource to
spend on a number of problems. The uncertainty surface can be inter-
preted as the likelihood of benefit to society. The different programs will
have different reduction rates and these can be estimated from historical
data (or from pilot studies). In this case funding would allocated automat-
ically after the politicians charactorized the uncertainty surface and the
social scientists evaluated the effectiveness of the various programs.

Conclusion
It is my hope that the ideas developed by search theory wi'l find a wider
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application when presented as a general model for reasoning. Sand-
meyers work has increased the domain of the problems by developing
approximation methods. On an intuitive level this model of reasoning can
be seen to operate in many fields. The advantages of having a formal
model are to be seen in a wider scope of applications and in more effi-
cient problem solving.
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Abstract

This paper describes a method to detect and segment ground
targets in IR imaging systems using statistical models for target
and background. The detection method is an iterative technique
that subtracts the background from the scene, using a double window
filter with the assumed independent distribution function for
background. The outer size of the double window is determined
iteratively by the largest connected component remaining in the
scene. The segmentation or boundary detection methods employs the
well-known statistical theory of change detection in speech
segmentation. The likelihood ratio test is modified to improve the
performance. The design method was initially applied on laser
radar range imagery, but simulation results showed that the method
works well for both flir and laser radar range image, hence
promising an advanced technique for multisensor fusion algorithm.
Hypothesis modelling for target and background is analyzed and a
brief discussion of the fusion algorithm is also included.

1. - Introduction

The double window filtering technique has been used by many
investigators for target detection for several years(l]. The double
window filter approach is a general technique which tests a
statistic calculated from the target and the background. The sizes
of the inner and the outer windows of the filter are usually fixed,
according to an estimation of the smallest and the largest target
sizes. Several factors limit the performance of the filter, such
as the requirement of knowledge of target size , time consuming and
the erratic behavior of the pixel classification near the target
boundary or inside a bimodal target. In this paper, we propose a
technique that attacks all those above problems by : i) updating
apriori knowledge of target size by a feedback loop, ii) speed up
the computational time of the filter by jumping the window instead
of sliding it pixel by pixel, and iii) testing the statistic of a
pixel by generating several outer window statistics instead of
using its neighboring pixel. The detection method is further
improved by incorporating a second test, which measures the
statistic of a connected component against its immediate
surrounding pixels to reject possible clutter components. The
detected boundary is then refined using the log-likelihood ratio

1
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test which detects the boundary without requiring a threshold.
This likelihood ratio test is modified with apriori knowledge
(i.e., knowing the direction of changes) to improve the
performance.

2. - Hygothasis modellina for taraet and background

Theorem [2] : let xlx2,.....,xn be independent and
identically distributed (lid) random variables

and On - xl + x2 + ...... + xn

Sn - O(n)
let - -.......

Os(5n)

where E(Sn) is the estimation of Sn and 0'(Sn) is the
standard deviation of On,

then random variable Y
a) has mean 0, variance of 1
b) is the sum of small independent random variables.

2.1 - Double window filter

The double window filter provides a technique to test the
statistics of the pixels inside the inner window against the pixels
inside the outer window, see Figure 1.

ZMWI WZDOWM(Z.W)

Xij - E ( Xij such that ij .O.W )
Let Si m .- -- --- ------- - for ijal.W

& ( Xij such that ijS O.W )

where XiJ are random variables of the array or image.

If the pixels inside the inner and the outer window are iid then,
Sij has mean 0 and variance of 1.

2
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2.2 - Hypothesis models

Let Ho denote the hypothesis for background
H1 denote the hypothesis for target

and
Hypothesis Ho : ( RiJ / S - S. )versus 0* • oHi : ( Rij / 0 w01 )

Here Rij represents the intensity of the ijth pixel and *ij
represents a feature extracted from Rij that we may use to
distinguish the target from the background. In flir imagery, the
thermal intensity of the target is usually different from the
surrounding background. in laser radar range imagery, at low
depression angle, the target can be distinguished from the
background by observing the variation of the measured ambiguous
range, because it is often reasonable to assume the background
consist of rough surfaces. Therefore, a 3X3 window is used to
convert the range image to the variance image as a preprocessing
(or feature extraction) step before using the double window filter.

Hence,
for each pixel inside the inner window, compute

oij - E ( gij such that i a o.w )
9 ij ----- M - a- - ---- aM - - ----- - aa-aa-M - a-a- -- --00 ( Oij such that ij 4 O.W }

O.W : outer window

where Oij is the mean of Rij for flir images and oij is
the 3x3 window variance of Riu for laser radar range images..

Then,
Ho : Sij N ( 0 , I )

H1 : Sij not belong to Ho

where N(0,1) denotes a normal distribution with mean 0 and
variance of 1. Note that the approximated normal distribution is
reasonable for both sensors because: i) for flir imagery, the
thermal intensities can be assumed to be small independent random
variablesi ii) for laser radar range imagery, the 3X3 window
variances of the ambiguous ranges were approximated to be
multivariate Gaussian variables[3].

3. Im-lemantation of the detection alaorithm

Figure 2 illustrates the implementation of the feedback loop
for an ROT (region-of-interest) detection algorithm with two
options labeled as #1 and #2. The first option determines the size
of the largest connected component in the scene, whereas the second
option determines the largest sizes, in horizontal and vertical,
of the connected components remaining in the scene after performing

3
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FIGURE 2 - BLOCK DIAGRAM OF THE DETECTION METHOD

Wm - DMLA PIXIOL 8 UT

a simple clutter rejection test. The outer window size is first
initialized and then the double window moves across the entire
image in such a way that its inner windows, which its size is half
of the outer window size, do not overlap, but are adjacent to each
other. This speeds up the computational time of the double window
algorithm, compared to the conventional method which moves pixel
by pixel l]. Each pixel inside the inner window is tested against
the statistics of pixels inside the outer window, for which the
connected components are formed by pixels passing a threshold value
which is normalized to the outer window statistics (explained in
section 3. 1 below). The sizes of these connected components are
then determined and fed back to the double window filter process.
This process is iteratively repeated while accumulating the
statistic for each pixel for each iteration. Pixel classification
is then performed to form ROI connected components. Each R0I is now
tested aqainst its immediate surrounding background pixel statistic
to reject possible clutter component.

3.1 - Hypothesis test #1 ( pixel classification )

Recall that Bij is assumed to have mean 0 and variance of I
approximately if Slij belonged to the background. Therefore, a
threshold can be chosen base on the justification of the
probability of error. That is, the probabilistic value of Sij can
be estimated corresponding to the total number of iterations, and
is tested to determine whether or not Sij belongs to the
background, which has mean 0 and variance of 1.
For example, a Student-t-test[4] may be formed as

E (Sij) -z
test ---------------- < to( (Student-t-test)

a**(Sij)/ Fn

where,
4
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zw : critical value of z for areas under the normal curve
tm : critical value of the t-distribution
n total number of iterations
a degree of confidence level

The number of iterations is usually greater than 10 when using
the student-t-test. Moreover, this requires the accumulation of all
the statistical values of Sij.

For more convenience, fewer computations and storages, a
binomial trial meth'iol can be used to test the hypothesis. For
example,

let Xij- 0 if SiJ < z.
- 1 otherwise

and P(XiJ -0) - P(Sij<z ) - p

then for n trials, the probability that X - 0 occurred k times is,

n! k n-kP(k) - -----.. ... ... ..- (l-p)
ki (n-k).!

Hypothesis test : accept HO if k > r

Hl if k 4 r
then

P(HI/HO)- 'g P(k)
k-0

From standard statistical tables which are available in most
statistical text books[4], we can justify n, r, and p to obtain the
desired value of P(Hl/HO). For example,

From Table IV, page 513 of Reference[4], if za - 0.9 thon p
- 0.815 at the significance level of 0.0005; From Table I, if n
- 5 and r - 1 then P(Hl/HO) < 0.0067.

Since the assumption that the pixel values of background are
independently dictributed may not be true in practice, we have to
justify the value of parameters based on the experiment. The
selected value of z a can be determined either from mathematic
model or from the histogram.

With the selected value of z. , connected components are
formed by ijth pixel such that the value of Sij is greater than z.
for each iteration. The outer window size can be determined
according to the sizes of theme connected components for each
iteration, and the process is repeated with this new value.

3.2 - Hypothesis Test #2 (clutter rejection)

From the previous process, the connected componentu are formed
by adjacent pixels such that for n iterations, P(Xij - 1) > 1 -

5
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P(Hl/HO). In this process, we will test the statistics of these
components against the immediate surroundinq background pixelq to
reject possible clutter components.

Let Ti and Bi be set of pixels as shown in Figure 3,

'(oI) I (s,

and let D&m m4

youa 0y4  +

where
Z(OL ) L K ( Oi such that ijZ )

oo ) - e({ *ij such that ij.Z )

The Student-t-test may be used in this case. Once again,
justification must be based on the real data experiments, and this
test (UNR teat) works as a simple clutter rejection method.

Suppose we have,
Hypothesis HO : D 4 1

versus HI : D > 1

then P(HI/HO) - I - P(z 1 < 1) ~ 1 - 0,8413 - 0.1587

This simple clutter rejection test uses the SNR and estimates
the sizes and shapes of the connected components to reject possible
clutter components. This process is illutrated in Figure 2 as the
option #2 in the feedback loop.

However, the final clutter rejection test is more important.
This test is derived from the analysis of the target and backqround
statistics to enhance the pezformance.

For example, let D is a function of means and variances of
target and background,

D w f(mT1,o"r m ,•

Assume that target mean and variance are greater than
background mean and variance, respectively. Then,

6
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D - (oro 0 Wr)*(m w %)

where o denotes a proportional operator and * denotes an
improportional operator, i.,

it m? > m2 then my -ma > 0 or mT/m, >

Therefore, the improportional operator can be a subtraction or a
division.

For flir imagery,

assume Min > m*, a T 0 o8

then D S "-- - + " . . +

For laser radar imagery,

assume mI > mr < 0

MO - mrn.
th en D * + ......... .. ..

Hypothesis HO • D 4

HI D > A

where %. is a constant, to be determined from the empirical
distribution. Note that, this constant can be modeled as a function
of range and weather conditions. In fact, these factors make the
target distribution function varied relatively to the background
distribution. Therefore, a constant setting threshold will have
false alarms or miss some detections in some images, i.e., close
or Jong ranges images.

4. - Boundary Detegtion Method

4.1 - Statistical Theory of Change Detection (5]

The use of the statistical theory of change detection in
speech segmentation has been known and very successful. The
results are impressive and well documented. Since the methods are
general, they are well suited for application to the detection of
the boundaries of objects in IR images. The likelihood ratio test
is the most common hypothesis test used to detect the time change
of an unknown autoregressive (AR) model.

P
Let - a4 y.. + v"

1-1
7
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where var(v,) - 0

• - ( a,,a 2 ,....... a9 t )

Hypothesis HO : 0 - 0. 1,2,.,,,,,,n

HI : * - of 1,2,....r r?

0 - *a r+l,....,n

r and Ols unknown

Here HO denote a detection of no change and HI denote a
detection of change.

Likelihood ratio test follows

max max min log L(HI/HO) >
r G, POa&

which yields,
max P(r) > A

r

P(r) - n log 6,1 - r log,'- (n-r) log

- mi ------ nYk " -- Ylk.I
S (#W) k Nw

0(W)- arg mi n ( Y & aY Y-1)
0 k W i a14

where W denotes any one of the 3 window (l,2,......,n},
(l,2,.....,r}, (r+l,......,n) and # denotes number of the elements
of the referred set.

4.2 - Modified likelihood ratio test

For our application, only HI is considered and the log
likelihood ratio test can be simplified to,

min P(r) - r log O"'(r) + (n-r) log oA(n-r)

where, oCt(r) : sampled variance of the set (1,2,....,r)
*4(n-r) : sampled variance of the set (r+l,....,n)

Appendix A gives an analytically proof of the log likelihood
ratio test base on the "ideal-stochastic" case. From the analysis
of the sampled variances, the following heuristic tests are
developed to improve the performance.

8
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Hypothesis HO : e - N ( mO , t0) 1,2, ...... ,n.

Hi : e - N (ml , dal) 1,2,.....,r

0 " N ( m2 , 0"2) r+l,.....,n

( mi P &2i) are sampled mean and variance of the referred set.

cane I : ml > m2 , O1 & l2

min P(r) - r( 2m0 - ml + log el ) + (n-r)( m2 + log o'2 )

case 2 : ml < m2 , 1' 012

min P(r) - r( ml + log ll ) + (n-r)( 2mo - m2 + log *'2 )

case 3 : ml # m2 , Il > 0'2

min P(r) - r( 20"O - &I + log ml ) + (n-r)( 0"2 + log m2 )

case 4 : ml • m2 , al < & 2

min P(r) - r( O'1 + log ml ) + (n-r)( 2rO0 - 4r + log m )

Note that the direction of changes are known. The improvement
of these modified tests over the log likelihood ratio test was
illustrated in the previous report[6] by mean of the simulation.

4.3 - Implementation of the Method

As previously described, the detection process generates a
binary ROI image. Since it is difficult to apply the test in two
dimensional data, we can now use a "spoke"(lJ, as shown in figure
4 below, collocated with each ROI to obtain sequences of data in
one dimension and then apply the hypothesis test above to detect
the boundary.

VzGR 4 L

9
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1) For each line of the spoke, obtain a sequence of data from
the original image, which is correspondingly positioned along the
line and where its length is twice the distance from tho centroid
to the boundary of its corresponding ROI. 2) Compute the value of
P(r) along that line and detect the boundary point as a point at
which P(r) is minimum. 3) Repeat step 1) and 2) to obtain N-
detected boundary point. 4) Connect these N(usually 64)-points to
form an object boundary. Repeat the process for each ROI. Note that
the data must be interpolated, especially for small targets, to
acquire a sufficient amount of data for the test.

4.4 - Iteration Method

The outer window size is initialized and then iteratively
determined to feed back to the double window process. In the
boundary detection method, the length of a spoke line is
initialized from the ROI boundary, thus it can be iteratively
determined to feed back to the boundary detection process. For
both processes, these iterations update the target size and the
surrounding background region.

5. - Multisensor Fusion Alaorithm

The availability of multisensor data raises the interesting
problem of how to fuse information obtained from different sensors.
The main difficulty is making a decision when the single-sensor
algorithms disagree with each other. Recall that the hypothesis
modeled for background distribution in different sensors all have
mean 0 and variance of 1, after performing a double window filter
process on the data. Therefore, we can fuse data from multiple
sensors after that process, but before the detection.

Futhermore, segmentations from multisensor (or different
segmentors) can also be fused using the log-likelihood ratio test.

For example, suppose that Al and A2 are segmented objects from
two sensors (or segmentors)

a Al A2

Let B be the box as shown in Figure 5 and assume that there exists

an optimum segmented region that satisfies:

r,,t- (#S,,, )*log &S,,,+ (#(B-SOp ))*log & (B-Sort) is minimum

10
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for all SLCB, where #X denotes number of pixels inside region X
and 0IX denotes standard deviation of pixels inside X.

Then we can apply the above formula to fuse the subsets of Al
union with A2 for obtaining a better segmentation. This is the
implementation of testing the log-likelihood ratio test in two
dimensions.

6. - Simulation Results and Discussion

Figure 6 illustrates the unprocessed original laser radar
images and their corresponding boundary detections. The connected
components are ROIs resulting from the detection and, as we shall
see, the pixel detection is just about 60 to 90 percent of the
target area but the boundary detection is as good as a hand
segmentation. This is an advantage of boundary detection over
thresholding for processing a noisy image or large deviation data.
Figure 7 illustrates a) the original flir image, b) the
segmentation of a), a) the zooming of data from b) with zooming
factor of 3 ( also use for d) and f) )I d) the zooming of data from
a) using bilinear interpolation, e) the segmentation of d), and f)
the down zooming segmentation from e). The segmentations seem to
work well as judging it by the human eye. Note that at present
time, the measurement of the segmentation accuracy is still in
controversy because of the difficulty of accurately located target
pixels in real images. For the zoomed case, the segmentation shows
to have an improvement over the unzoomed case, and thus for small
targets, data must be interpolated before testing the hypothesis
to detect the boundary.

However, most of the algorithms have a failing case and this
algorithm fails if the hypothesis is false or if the target shape
is not a simple N-side polygon. Therefore, a fusion algorithn for
segmentors is a must for seeking an optimal segmentation.

7. - Conlusions

This paper has presented i) an iterative technique that uses
a double window filter for target detection; ii) the implementation
of a log-likelihood ratio test to refine the boundary of a detected
object without requiring a threshold. For this latter case, the
concept of partitioning an object into several subregions (just as
we have done with a spoke) demonstrated that, an object ought to
be thresholded at several levels, rather than by a single value.
That is, the object is first estimated by segmenting with a
threshold value, and than partitioned into subregions to find a
threshold value for each subregion. This concept should be
implemented by a technique that uses a normalized threshold value
for segmentation to improve the performance. Even though this is
true, the optimal performance can not be gained by a single method
due to the presence of clutter components near the target.
Therefore, a fusion algorithm for segmentation is needed to reach
the goal, and the log-likelihood ratio test appear to be a good
candidate of hypothesis test for this fusion algorithm.

11
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FIGURE #7
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APPENDIX A

Proof of the log-likelihood ratio test for an "ideal-stochastic"

case

Problem let S be a set of random variables {sl,s2. ......... ,sn}

hypothesis e = ei {sl,s2. ....... ,sk}

e = e2 {sk+l ........ ,sn} el ý e2

prove that y(r) - rlog O?(r) + (n-r)log <Y2 (n-r) is minimum at

r - k in these two cases,

case 1 el - E(sl,s2. ...... ,sk)

e2 - E(sk+l, ...... ,sn}

var{sl,s2,....,sk} - var{sk+l ..... ,sn} -

case 2 e1 - var{sl,o2. ....... ,sk}

02 - var{sk+l ........ ,sn}

E{sl,s2,....,sk} - E{sk+l,....,sn} - E{sl,s2, ...... ,sn) - 0

where aI(r) : sampled variance of the set {sl,s2, .... ,sr}

eA(n-r): sampled variance of the set {sr+l ...... ,sn}

0 <r<n, 0 <k<n , n>0

Notice that the meaning of the "ideal-stochastic" in this problem

is,

we assume that C (r) - 0 (k) for all r less than k

and & (n-r) - 0 (n-k) for all r greater than k

100



case 1: el- E(s1,s2 ......sk)

02 *E(uk+l,,....,Il)

var(s1,s2,.e@,sk) - var(sk+L,...,sn) *

proof :

since var~si) - ~for V i*en and E~si) 0 E(Mj) for i~3c<j

then, e (r) *,,L and &~L(n-r) :IP, cr'tor all r en

at r - k &, (~ r) -- > 001& &&(n-r) --- > gs

-am> y(r) -r*log &&1(r) + (n-r)log 0"'(n-r) is minimum at r- kc

case 21 2 var(sI,s2,......,sIC)' &- %

02 - var(sk+l,......,sfl) - Ox" a;I~ ~

2(8l,82o....,sk) - E(*k+l,.*....sn) a Z(81,s2,...,sn) -

y(r) - r*leg cl&(r) + (n-r)*log &&(n-r)

for this came, to prove y(r) is minimum at r - k, we have to

prove that dy/dr - y'(r) < 0 for r 4 kc

and > 0 forr > k

proof:

o~~rI- o for r $k

- k*o',a + (r-k) *&.)/r - (r) ,r > )c

e"(n-r) - UC (kr) *&,+ (n-k) *01]/ (n-r) - 14 (r) r 4 kc

- 0,1 r >k

y(r) - r*loq &,& (n-r)*log(,,%(r)) r 4k

- r*loq( X (r)) + (n-r) *loq cY, r > kc
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COMPARISON DENSITY UNIFICATION OF STATISTICAL METHODS
FOR CONTINUOUS AND DISCRETE DATA

by Emanuel Parson
Department of Statistics, Texas A&M University

Abstract Step 2: form expectations; Step 8: compare observations

The analysis of a univariate continuous sample is and expectations (goodness of fit of model to data); Step
proposed as a probability mode1 Identification process 4: if model does not fit observations, revise model to fit
consisting of four steps, each of which yields a distribu- (by estimation of the comparison density).
tion function, respectively denoted F, r, F^, F^; each I believe that one should try to answer the philo-
represents the outcome of successive steps in the anal- sophical question: what makes statistical inference possi.
ysis. Step 0: F, the true distribution function; Step 1: ble (what makes it possible for us to be able to infer from
F, the fully non-parametric sample distribution; Step data probability models that fit the data)? We propose
2: r - F(.; 6%)s a smooth distribution function obtained that the answer includes the following fact: if 0 is a dis-
from a parametric model F(.; 0) whose parameter 9 is ef tribution function which one considers as a model for the
ficiently estimated by 0^; Step 3: Comparisons of obser- true F, the transformued, random variable W = G(Y) has
vatious I' and expectations F^ ar* provf&d by suitable distribution function F(0- 'uj). and quantile function
sample comparison density functions denoked d") which G(F'"'(%.4), both of which equal the identity function u
se fully nou.parametric estimators of a comparison don- when 0- JP and F is continuus.
sity (denoted d or d(u),, 0 •. u. _ 1) which compares F Pmabilitlp Model Iderntgflation Fundamental Ap-
and r; Step 4- FP, a smooth-paxntrk estimatorý of pWekA' BASe estimation criteria on the idea that for a
F, is obtained from a smooth estimator d' which we rec. continuous random variably the, closeness of a, model G
ommend as the optimal way to provide a goodness of to the true F is judged by measures which test, tie hy-
fit test of F^ to r. E&-amples demonstrate the insights pothesis that W - G(Y) Is Uniform[0,1].
obtainable from this approach. To test a hypothesis Ho about a random variable W

of which one has observed W1, .. ,W, (a random sam-

1. Introduction ple) early researchers (going back to the first hypothesis

We propose the concept of unification of statistical testers such as Laplace (1754)), proposed (1) comput-

methods in order to develop a general philosophy of st- ing a suitable test statistic T, (2) determining exactly or

tistical data analysis. We propose that ways of thinking asymptotically the distribution under H0 of the statistic
abou sttistcalend (gols)and ean (pocedres am T; (3) using this distribution to determine a rejectionabout statistical ends (goals) and means (proc.edures) a r itclrgoe fvle ftesawl ,asmn

needed that provide a framework for implementing and critical region R of values of tho statistic T, assuming

comparing several different approaches to a data anal- a specified probability of rejection a; (4) reporting re-

ysis problem. We believe that unification has benefits jection of the null hypothesis H0 if the observed value
which include: existing (often parametric) methods will of T belongs to R, or at leot reporting a p-level of the
be better understood; many new (often nonparametric) observed value of T (defined to be the largest value of a,

methods will be developed. The new methods are usu. probability of rejection, whose rejection critical region

ally computer intensive; consequently unification of sta- contains the observed value of the test statistic T), This

tistical methods can be considered to be closely related paper proposes to form critical regions that represent

to computational statistics. We define computational differences from 1 of the probability density or quantile

statistical methods as characterized by being graphics density of transfomed random variables W on the unit

intensive and number crunching intensive. Interval.

This paper provides an introductory account of 2. Parametric Probability Model Identification
our approach to unification for the case of observations Step I. of data analysis is to form fully non-
Yl,...,Y. which are a random sample of a continuous parametric estimators: the sample distribution func-
random variable Y with true unknown distribution func- tion F(x) and the sample quantile function Q'(u) =
tion F, quantile function F ', and probability density r-'(u), where
function f. The estimation of these functions is called
the Probability Model Identification Problem, F'(x) = fractior of sample 5 x, -co < z < 0o

Our approach implements our favorite definition of
statistics: Step 1: make and summarize observations; The sample probability density f does not exist
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as an ordirnary function but the notation is used as a defining cross entropy of two continuous distributions F
symbolic function which has meaning as an integrand. and G

The sample expectation F"[g(Y)j is defined by

( n) ~ gYH(F; G) - (--2) (log g(y))f(y) d.
ri(O)] -(1/n) EAy

jot (We defiae entropy of F by

which can Also be expressed as an expectation with re- M(F) = (-2) f (logfY)) )dy.
spect to F: f d

reg(Y)] j We define Kuliback information divergence by

f Go (r; o) - (-2) (Iodglgv)//l(y)),f(y)dy
Step 2 forms fully parametric estimators F^(z) anid

QA(u) of the form - H(F; 0) - 1(F).

.M(g) F,(*;GA), Important inequalities are I(F; 0) 2 0, 1(F;G) _>
11(F).QOM ) qkolThe procedure of maximum likelihood estimation

where 0' in optimal estimator of the(Vetor) can be expressed in terms of information theory con-
eter 0 of a parametric model which we vexpre parasy cepts. The population likelihood is negative cross en-
pothesis Ho gipr etn b tropy. If the true 1(y) equals f(y; Oo) then -L(O) has
pothesis Ho given by Its minimum value at 0 - Go, and the minimum value

Ho:7(x) m !(x; 0) Is the entropy Ri(F(.; Go)). Similarly the sample likeli-
hood L'(O) has its maximum value at 0 - 6^, and the

for some value of the vector parameter 0. maimum value satisfies:

The maximum likelihood principle of estimation L'(S")--H(N',FS) -H(r),
forms 0 as the value of 9 maximising L"(G), the sam)
pie (average log) likelihood, defined by When the parametric family f(.;9) is an exponential

L'(0) = (2/n) logf(YI,.., Y; ) model,

SL'($^) - max L*(G) - -H(F(.; 6'))- (2/,,) Flog f(Y,; 0)
Jul the nag-entropy of the fitted distribution.

Expressions for L'(G) that we find useful for interprets. S. Comparison density fuucltion
tion are For F fixed, minimlmislng population cross-entropy

L'(8) = 2E'log(Y; 0)] H(F; F(.; 9)) is equivalent to minimising population in-
formation divergence l(F; F(.; 9)). One can regard this

- 2 f log f(y; G)d)r(y) as a mathematical measure of how closely one can ap-
J-oo proximate F by a member of the parametric family

ot F(.; 0). But we prefer a more statistical interpretation
f- 2 log f(Q(u); 9)du in terms of the comparison density function of two con.

0r tinuous distributions F and 0, defined as follows:

Sample likelihood is ani estimator given the obser-
vations of the population likelihood d(u; F,G) - gF-'(u)/fF-'(u)

L(O) - 2 " log f (y; )•-•df) One can show that

I d(u; F, 0) - D'(u; F, G),

= 21u log f(Q(U; G)du defining

- -H(F; F(.; 0)), D(u: r,a) = (F-'(u)).
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One can show that their (asymptotic) distributions when parameters are es-

timated, and they do not satisfy the vital criteria of (1)

I(F; G) = (-2) - log d(u : F, G)du. looking at the data Lnd (2) providing insight into how
Jo to revise the model when it does not fit.

The "components' approach chooses score functions
We interpret I(F, G) as a measure of the closeness to 1 J 1 (u),..., Jm(u) satisfying for j - 1,..., m
of the density d(u : F, G).

The information and comparison density interpre-
tation of maximum likelihood estimation that we are J (u)du = 0, = 1,
proposing can be expressed as follows: population lilkeli- 1

hood is related to I(F; F(.; 0)) which measures the lose- Jj(u)J3((u)du = 0 for ' • A.
ness of F(.;$) to F by measuring the closeness to I Jo
of d(u;F;F(.;0)), the derivative of D(u;FP(.;6)) -
F(F-I(u); 0) which is the quantile function of the ran- Components are statistics 7" ('linear detectora")
dom variable W -= F(Y; 9); maximum likelihood esti- which are linear functionals in cr(u) of the forni

mation of 0 Is equivalent to finding the value of 9 of the
transformation from Y to W, which is closest to a Uni-- -( - I i, d" f Jj(u)c-(u)du = f (u)dD'(u)
form[0,1] distribution as measured by the distance of the (o (o
sample quantile function F(F -1 (u);0) from D(u) = u.

The estimation process in Step 2 uses quantile func- - (I/N) A.J(W,) - EJV,(W)]
tions. Step $ uses distribution functions for goodness t=l
of fit tests; one measures how close the fitted model
F(.; 09) = F4(.) is to r' by how close to uniform is the Components often can be shown to be idymptot.
sample distribution function DX(u) - F(F-'i(u)), also ically normal (under the null hypothesis) independent
denoted D' - F(QA) N(0, o/n) random variables. Component tests judch sig-

To understand why the sample distribution function nificances of t'T(J) and r 9 h,m, defining chs-squared
is more convenient note that it is an estimator of D(u) i test statistics
F(F^l(u) with derivative m

d(u) = I(F'(u))/f(F^(u)). s Yom -( .

An estimator d^(u) leads to a revised estimator f^'(1) by The Cramer-von Mises goodness of fit test is a
"quadratic detector' in the sense that it can be expressed

.fl(y) - d(F )r(Vy), as a weighted sum of squares of components:

Step 3 of our approach to statistical data analysis studies rj
various diagnostics of DX(u) which measure the signifi.Jo (D'(U) - u)'du - • [ d1]
cance of its difference from u, and forms sequences of 1

smooth approximations d^(u) of the symbolic derivative
d (u), Step 4 chooses an optimal d^(u), which could be where
identically 1; if thia is not the case, one obtains a revised ¢•(u) = 2.8 costilru), w, 1/jir,
probability density estimator 1'(p), The Anderson-Darling goodness of fit test is a

quadratic detector:
4. Diagnostic@ of comparison distributions q

The sample distribution function D" - r(QA) of 1 .*

W F^(X) is called a sample comparison distribution, r(Du) - u)2/u(I - u)du =
estimating D - F(QA) which measures how well the true o J'u1
F is approximated by the fitted model FP.

Classical goodness of fit statistics are portmnanteau where
statistics, such as the Cramer-von Mimes and Anderson-
Darling tests ir the continuour cue and the criginal Karn p,(u) = (2j + 1)'8 pi(2u - 1), to, = 1/j(j + 1)'5, p.(t)
Pearson Chi-Square test in the discrete case. We do
not rer.ommen'l them because it is difficult to determine are Legendre polynomials cn [-1,oj.
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Hermit. polynomial goodness of fit test can be de- where W is the integrating factor that guarantees that

fined by a quadratic detector with t. = 1/j, dom is a density.

Oj(u) - (6t)"Hd(" 1 (u)), H4(n) 8. Order determination
are Hermits polynomials. The problem of goodness of fit can be regarded

Ar quaratic detetorian beu a problem of determining the optimal order mW and
A quadratic detector can be interpreted as whether the optimal order mA - 0. As m Increases,

dotm(u) converges to tr(u) m d(u; F', Pr) and IRo(do,.)
J(C(u) - u)Idu increuewto

a distance from I of a smooth density estimator IRo(dJ 1 R.. I(d(u; F', F^))

()- + [ which is the Moran goodness of fit, or non-parametric
Eentropy, test,

J=1 The combination of F^(.) - F(.;$^) and do,.- is
regarded as an estimator F', A random sample from

5. Comparison density estimation F^ can be generated from i random sample from F^
The novel elements of this paper are the role of the using do,m- and the rejection method of simulation.

comparison density function, and especially the proposi-
tion that estimation of the comparion density function . Example, of One Sample Continuous Data
can be used to motivate and Interpret components. In. Analysis
terpret sample components T7(Ji) as eAtimators of National Bureau of Standards NBEO Measurements:

Freedman, Pisani, Purves in their textbook on Statistics
[l [(p.94) report 100 measurements of the 10 gram check-

T(V ) Jo Jj(u)d(u)du - - J(FA(z))dF(x) weight NB1O made at the National Bureau of Standards.
They nport: 'The normal curve does not fit at all well.

Consider all d(u) obeying the constraints that for The normal curve does fit the data with three outliers re-
j -,... ,m moved. The normal curve fitted to these measurements

T(3j) - T7(Ji); hu an average of 404 microgrAms below 10 grams, and

one determines dA,m, defined as the density obeying the a standard deviation of about 4 micrograms. But in a

constraints which minimises small percentage of cases, the measurements are quite
a bit farther away from the average than the normal

% og fcurve suggests. The overall standard deviation of 6 mi-
1R1(d) ulogj 4(ujdu, for - crograms is a compromise between the standard devia-

0 tion of the main part of the histogram (4 micrograms)

IRo(d) -2] {logd(u)}d(u)du, for A = 0, and the three outliers, representing deviations of 18,
Jo 30, and 32 micrograms. In careful measurement work,

IR._lI(d) -2 f{-- log d(u))du for A - -1, a small percentage of outliers i expected. The only un-
.0 usual aspect of the NB10 data is that the National Bu.

reau of Standards reported its outliers; many investiga-
IRA(d) -(2/A(1 + A)} log {d(u)}l+Adu for A. toen don't. Realistic performance parameters require the

acceptance of all data that cannot be rejected for cause,.
We call IRA(d) Renyi information of index A, The NB1O data illustrates the statistical analysis

An explicit formuls for di,m is the truncated Fourier strategy that we propose be routinely applied to data.
series: M Step 1. Specify a parametric probability model for the

di.. " Eiji, di]J(u), data (here the model is normal). Step 2. Estimate pa-
rameters of the model (here mean and standard devie,
tion) to be 10 grams-404 micrograms and 6 micrograms

An exponential model with parameters e0,... , Om is respectively. Step 2V. Robust parameter estimation by
the form of do,m: Renyi Information of index between 0 and 1 obtains as

estimators of a normal model (fitted to the part of the
logdo,m(u) OA, 1 bJ(u) - *(0 1,..., 9,,) data that can be well fitted by a normal model) the same

k mean and a standard deviation of 4 micrograms. Step
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4: Goodness of fit test of normality by traditional teots. a step function estimator computed from increments of
Step 5: Maximum entropy estimator of comparison den- D(u; F(, I$ A)Jr) over 8 sub-intervals.
sity d(u; normal model, data) clearly indicates the na-
ture of the data; a poor fit of normal model to data. Chezig and Stephens Br'eak St'e... Datia
Shape of dA(u) in interior of interval (0,1) can be inter- (Stem and Leaf),
preted as expected curve if d'(u) estimates 271 .6

d(U; N(O, (6)2), N(0, (4)2)) 2989

- ceP{.5M i (1() '} . $a 6/4. s0 .07 .65
81 .23 .53 .53 .82

Peaks of dt(u) at u = 0, 1 Indicate longer tails than 32 .23 .28 .69 .98
normal. In general, one must decide whether to con- 838 .28 .28 .74 .74 .88 .88 .86
aldeor these tails in cr(t) as outliers or as evidence that 84 .15 .15 .15 .44 .82 .74 .74
a longeor tailed distribution than the normal should be 35 .03 .03 .32 .44 .61, .61 .73 .90
used to model the data. In Figure 1 two graphs Blue- 30 40 .70
trate the comparison density estimation process; the 37 .07 .88 .36 .36
raw estimator tdtu) supe~riposed on a smooth esti.. so
mator dA(u); the exponential model smooth astim~amc 89
do,4A, the orthogonal polynomial estimator dl,eA, azid 40 .28
a naive step function estimator d* representia-g In=*e-
ments of D"(u) on 8 equal subintoryals. fliagnostte S. one Satmple Discrete Datea Analysis
tools at step 1 which help identify probability models Step. L- IdentWf~ a parametric- fan*.i~ of probability
for the data are illustrated by a IQQ plot of the sample mass functions. p(u;, 0)' to modell the. sampkh probability
quantile function of the data versus the quantlie, func- mass functionpu)
tion of a normal with density f (c) - exp(-irm2). The Step 21 Parameter estimation. Maximum likelihood
Informetive quantile function of the sample is defined estimator 0A can be obtained by minimising
qP(u) - {Q'(u) - Q"(.8))/2{Q(.75) - (.5)

Breaking Stress of Beam: Cheng and Stephens 1R_ I (d(us; r, F(-; 0)))
(1989) give a data set of breaking stress of 41 beam spec- -)Elgpz )p()px
imens cut from a single carbon block of graphite 11590, ()~l{(;9/~)pa
aind discuss goodness of fit tests of the hypothesis that
the data is normal. Let P(-; 6') denote the normal dis- A parametric estimator of p is PINg) - pAX; 6A). Mini-
tribution with maximum likelihood estimated value of mum chi-square estimation uses the modified chi-squared
0. They show that MorAn's statistic, which is equivalent distance
to IRo(d(u; F(.; 6^), Y) 'correctly' rejects the hypoth-
esis that the sample is normal, in contrast to more tra- IR1(d(u;Y'~,F(.;6)))- ((')/i)-1)p)
ditional empirical distribution based statistics (such as
Kolmogorov-Smfrnoy anad Cramer..von Mises) which ac- Step S.: Parametric hypthesls testing. To test a hy-
cept the hypothesis of normality for the samnple tested. ohssH bu isprmtr0 o H'dnt h
The comparison density estimation approach indicatepoess H0 abm~outie the pqarmeerestiletoro 0 

Adenot tHe;
the nature of the data; an excellent fit of normal model eqivnitumtodifeieod ch tio sq teestsimator o 9es staidetic
In interior of interval (0,1) but peaks at us - 011 indi- euvln olklho ai et stets ttsi
cate outliers or Iong tails (clearly evident in stem and !idu ~ (;~.))-1 1 du ,F. A)

leaf table of the data). One conjectures that a symnmet-
ric extreme value distribution would be a more appro- Step 4: Goodness of fit test of 11o , p - p(-; 9A) or
priate model. Figuri 2 illuitraes the comparison den. equivalently H0 : d(s; FP(-; 6^), F) -a 0. Test the signifi-
sity estimation process for a norma.) model !(;AThe cance of the difference from sero of
graph of D(u; F(,; 6'), F") ic graphically well fitted by
a uniform distribution, aind therefore passes traditional Ifil(d(u; F.G) ) R.a~i;F (;9))
goodness of fit tests. The raw estimator d(u; F(-; 0% F*)
is superlimposedl on a smooth estimator. The exponen- Step 5: Max~mumn entropy goodnemis of Ait tests and
tial model smnooth estimator dA(u) is superimposed on estimators domA^(i) of d(u; F(.; V), F) are obtained by
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minimsizng IRo(d^) among densities d'(u) satisfying, for Rayner, J, C. W. and Best, D. J. (1989). Smooth Teats
k = 1,..., m and specified score functions J,('4), of Goodness of FAt, Oxford University Press, New

York.
[4, d`i[J1,d] Read, T. R. C. and Cressie, N. A. C. (1988). Good.

ness of Fit Statistic# for Discrete Multivariate Data,
defining da(u) - d(u; F(-; 0^),.r•) For m large enough Spritger Verlag, New York.
do,mr(u) equals (.(u) aud 1Ro(do,.^) increases to a test
statistic (alternative to that of Step 4) )Ro(d(u; 7(,; 0), Renyi, A. (1961). *On measures of entropy and infor.
r)). mation.* Proc, 4th Berheley SYmp. Math, Statist,

Step 0: Rejection simulation nonparaznetric estima,. Probability, 1960, 1, 547-461. University of Califor.
tion of F. Use an order determining criterion to deter, nia Press: Berkeley.
mine an order mA with the properties: If mA m 0, ac. Shorack, Galen and John Wellner (1988) Fmpiricld Pro-
cept HO; If one rejects Ho use do,mA'(u) as the density ceases With Applications to Statistics, Now York:
to be used in the rejection method of simulating a ran- Wiley.
dom sample from F. The combination of F(-; 0^) and
d0,mA.(u) is regarded as an estimator F^.
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Figure 1
Test NBIO Measurements for Normality
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Figure 2
Test Breaking Stress Measurements for Normality
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ABSTRACT

The objective of this program was to determine the best camouflage net colors and texture for
Saudi Arabian desert backgrounds, The program began with a fact.finding visit to Saudi Arabia. Two
of the findings of this visit were that the standard U.S. Army desert net was too dark, and that a
light-colored monotone net would best fit in with the backgrounds. Using this information, and
spectrophotometric readings of soil samples, a series of test nets were constructed for a field test in
Saudi Arabia, Twenty-four nets of different colors were constructed for use in the 'ulilscale test. The
standard U.S. Army desert camouflage net was used for comparison purposes, Five test sites, repre-
sentative of terrain colors generally found in the SANG operational areas around Rlyadh and Hofuf,
were selected. The test procedure involved a selection and ranking process as to their ability to blond
with the background, The nets were narrowed down to six final candidates, and then these six were
ranked in their order of preference. This data was statistically analyzed, and the final color/texture
recommendations made. This project joined the expertise of an engineer, statistician, and psychologist
into a working operational research team to develop a new camouflage net for SANG.

1.0 SECTION I .. INTRODUCTION

The Beivoir Research, Development and Engineering Center (BRDEC) was requested by the U.S.
Army Project Manager, Saudi Arabian National Guard (PM, SANG) to provide assistance in developing
a camouflage program. A fact-finding team was dispatched to Saudi Arab;a to determine the specific
requirements for the program. The primary areas of interest were the vicinities around the capital,
Riyadh, and Daman-Hofuf, the center of the oil-producing area along the Persian Gulf, It was found
during the visit that the U.S. standard desert camouflage net was too dark for the light desert backgrounds
of these areas, As a result, a program to develop a new camouflage net for SANG was begun.

Spectrophotometric readings of soil samples taken of the areas of interest during the fact-finding
visit, along with color slides of the areas, were analyzed and studied to determine a spectrum of desert
colors for use in the construction of a series of camouflage nets for a field evaluation in Saudi Arabia,
The field evaluation narrowed the spectrum of colors. The remaining colors were further refined, and
other colors were added for a second field test. Eleven desert tones were developed for the second
field test. All the nets constructed for the second field test were monotones since it was determined
during the first field test that monotones blended better with the Saudi Arabian light-colored deserts.

In addition to color, the variable of texture was also investigated. Texture is defined as the degree
of perceived roughness of the camouflage net. Texture is caused through the incision cuts in the material
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making up the net. The shadows caused by the incisions gray out the color of the net. The larger the
incision cuts, the more the net color is affected. The incision size used on the standard U.S. Army net
was too large and tended to gray out the light garnish colors which would blend well Into the desert
background. Two smaller incisions were developed for testing the eleven selected garnish colors. These
incisions were identified in this report as "small" and "smaller". This report describes the second field
evaluation of the camouflage nets that took place in Saudi Arabia. with the objective of determining
the most effective camouflage not colors and texture (incision pattern) for use in the Rlyadh and Hofuf
regions of Saudi Arabia.

2.0 SECTION II .. EXPERIMENTAL DESIGN

2.1 Test Nets

The same color was used on pairs of nets, i.e., one for the small incision size net and one for the
still smaller size incision net, In addition to these nets, a two-color net (i,e,, one color on each side)
was developed for each incision size for evaluation in both light and darker desert areas. Two standard
U,S. Army desert nets were also included for control and comparison purposes, making a total of
twenty.six hexagon nets, The small incision nets were identified by Roman numerals I through XIII,
The smaller incision nets were identified by the lower case alphabetical letters a through m. Note that
test nets V and o had a different color on each side, and that test nets VIII and h were the standard
U.S. camouflage nets with the standard incision size,

2.2 Test Sites

A total of five sites were selected, four at Riyadh and one at Hofuf, The site locations and color
designations were as follows:

* Site 1-Tan; Riyadh
e Site 2- Light Tan; Riyadh
* Site 3- Brownish Tan; Riyadh
9 Site 4-Grayish Brown; Riyadh
* Site 5- Reddish Tan; Hofuf

The exact site locations were selected so that the nets were always observed against the terrain,
and not highlighted against the sky.

2.3 Experimental Design

The nets were set up at each site, separated by incision size reading 1I" through "XIII" for the
small incision group and "a" through "m" for the smaller incision group. A red flag was placed on the
first, sixth, and tenth nets, thus subdividing each of the two incision size groups into three smaller groups
of five, four, and four.

The test procedure involved a selection process during which the thirteen nets from each incision
size grouping were narrowed down to three final candidates within each incision size, and the final
three from each incision size were grouped together and ranked in the order of preference. The subjects
first selected three nets from each incision size subgroup (i.e., five, four, and four) which best blended
with the background. The results were tabulated in the field, and the best three nets were kept, with
the others being taken down. This left three subgroups of three nets edch. The next iteration involved
selecting the best two nets from each new subgroup. Again the results were tabulated in the field, and
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the worse net for each subgroup was taken down. This left a total of six nets standing for each incision
size group. These six nets were then rated as to color blend and texture, with one being the best rating

and six the worst. The results were tabulated and the three best nets from each incision size setup
were identified and moved to make one final group of six nets. The ranking in order of preference as
to color and texture was performed as before, to determine which color and incision pattern best blended
with the background, Note that this one-through-six rating was the first time the small and smaller

incision size nets were evaluated as one group, For all the ratings, described above, no ties were allowed.

A briefing was read to the observers, at the start of each test, describing the sequential setups of
the nets, and pertinent instructions for each particular phase of the test. All evaluations were performed
between the hours of 1200 and 1400 for proper sun angle and minimum shadows. Each day was clear
and hot with temperature ranges between 118-130 degrees Fahrenheit, This procedure was repeated

for each of the five test sites.,'

2.4 Subjects

A total of sixteen male subjects (seventeen for site 1) were used as observers for each of the five
sites, The subjects were screened for visual acuity using a reading card produced by the American
Optial Corporation, PseudoIsochromatic Plates were used to screen each potential observer for color
vilio. In order tn participate In this study, both screening tests had to be passed,. All subjects were
employees of the Vinnell Co-,poratlon, stationed In Riyadh,

3.0 SECTION III .. RESULTS,

Of the twenty.six color/texture combination desert camouflage 'nets tested, thirteen advanced to
the final selection process in at least one of the five sites, Table 1 summarizes the placement of these
nets fbr each site, Net "c" was added only to aid In computer data analysis, by completing the pairing
off of the color/texture combinations, It was not used in the final grouping for any of the five kites,

I Table 1
Final Placement of the Desert Camouflage Nets for Each of the Five Test Sites

Not Sits Total
1 2 3 4 5

I No No No Yes No 1
III No Yes No No Yes 2
V Yes No Yes Yes No 3
IX Yes Yes Yea No Yes 4
XI No No No Yes No 1

XII Yes No Yes No No 2
Xlll No Yea No No Yes 2

a No No No Yes Yes 2
o No No No No No 0
e Yes No Yes Yes No 3
I Yes Yes Yes No Yes 4
k No No Yes Yes No 2
I Yes Yes No No No 2
m No Yes No No Yes 2
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3.1 Net Color

The same colors, with the exception of nots V and e, appear for each of the two textures. Nets
V and e were reversed to show their darker side when used on sites 3 and 4 in order to evaluated
the side which matched the background closer. Normally, the color perceived of a one-color net is
a result of a visual integration of the garnish color and the incision shadows producing a third color.
In the case of reversible nets, with different colors on each side, the color perceived is actually a
fourth color, This is the result of the visual integration of some of the color visible from the reverse
side of the net, Therefore color IX on one side of net V or e is perceived slightly altered by the
addition of color XI on the reverse side caused by the convoluting garnish. It Is this "fourth" color
that was evaluated during che net tests.

Using the numerical values of one being the best, six the least preferred, and seven as not
being in the final set of nets for color/texture evaluation at each of the five sites, the mean value
of acceptance with the associated 95% confidence interval was determined. This descriptive data
Is shown in Table 2 and pictured graphically in Figure 1, The higher the value of preference, the
les preferred is the net color/texture.

Table 2

Mean Preference and 9S.Percent Confidence Intervals for the
Final Desert Net Colors, Small and Smaller Incisions, Averaged Across All Sites

Not Sample Standard Standard 95% Confideno Interval
Color Size Mean Deviation Error Lower Limit Upper Limit

i/a 102 6.43 1,2355 ,0970 0.24 to 6.62
1i1/o 162 8.38 1.3606 ,1069 6.17 to 6.59
V/4 162 4.92 2.0851 .1638 4.60 to 5.24
iX/i 162 3.60 2.2861 .1797 3.24 to 3.98

XI/k 162 5.91 1.8776 .1475 5.62 to 5.20
XII/i 162 5.52 2.0828 .1636 5.20 to S.84

Xiii/m 162 5.70 1,8556 .1458 5.41 to 5.99

Colors IX/l and Vie are the most preferred colors with mean preferences of 3.60 and 4.92
respectively. The associated confidence interval states that there is 95% confidence that the true
mean preferences rest between the upper and lower limits shown in the table. An analysis of variancet/

was performed upon the data in 'Table 2 to determine if there were significant differences between
colors when compared with sites (Table 3).
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FIure 1. Grapble Display of Table 2

Table 3
Analysis of Variance for Net Colors as to Blond With Sites

Degrees of Sum of Mean Significance
source Freedom Squares Squares F-Ratio Level
Colors 6 938,90 156,4938 45.4800 0,000'
Error 1127 3880,4938 3.4432
Total 1133 4819.4568

Bartlett's Test for Homogeneous Varianceu
Number Degrees of Freedom - 6
F - 15,426 S1gnoflanoe Level a - 0.000'
*8lgnifloant at a les than 0.001 level
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Table 3 indicates that there were significant differences in the ability of the desert net colors
to blend with the background. The Bartlett's Test indicated that the variances of each color were
not homogeneous, i.e., significantly different, so they are not necessarily from the same population.

The Duncan's Multiple-Range Test (Table 4) was used to determine where these significant
differences in colors occurred. This test separates a set of significantly different means into subsets
of homogeneous means.

Table 4
Duncan's Multiple.Range Test - Desert Net Colors

MIWAo
Subset I Subset 2 Subset 3 Subset 4

Color Mean Color Mean Color Mean Color Mean
IX/I 3.60 V/e 4,92 XIl/I 5.52 II1/o 8.38

XIII/m 8,70 I/a 8.43
XI/k 5.91

Table 4 showed that the best color was IX/i for blending with the desert backgrounds.

Table 5 contains the nonparametric 2/ results of the Kruskal-WAllis One-Way ANOVA as a double
check upon the Duncan's Test. The Bartlett's Test indicated that the variances for each level of
color were not homogeneous. Parametric tests, such as Duncan's, assume homogeneity of variance.

Table s
Kruskal.Wallls One.Way ANOVA - Desert Net Colors

Color Sample Size Mean Rank
I/a 162 708.72
Ill/o 182 704.22
V/0 162 471.28
IX/A 162 308.15
XI/k 162 638.24
XII/A 162 575,41
XIII/m 182 56e.49

Total 1134

Sample Size Chi-Squared Significance Level
1134 181.5825 0.000*

Corrected for Ties
sample Sixe Chi-Squared Significance Level

1134 223.8419 0.000*

*Significant at a less than 0.001

These results were in agreement with Table 3 above.



3.1 Incision Size

Table 6 showed the descriptive data for the small and smaller incisions, which is the second
variable of interest.

Table 6
Mean Preference and 93.Percent Confidence Intervals

for the Small and Smaller Net Incisions, Averaged Across All Sites

Incision Sample Standard Standard 95% Confidence Interval
Size Size Mean Deviation Error Lower Limit Upper Limit

Small 607 6.16 2.30 .0963 4.97 to 6.36
Smaller 667 5.83 1,74 .0731 6.69 to 6.97

6,05.9

S5,5.89

S5,4 5.35

-• 5.0

W• 4.97

S4,8

SMALL INCISION SMALLER INCISION

INCISION SIZE

Figure 2. Graphic Display of Table 6

Table 6 and Figure 2 showed that the small incision was preferred over the smaller incision.
Table 7 contains the analysis of variance performed upon the data of Table 6 to determine if these
differences are significant.

117



Table 7

Comparison of the Mean Preference of the Small Incision vs the Smaller Incision
Degrees of Sum of Mean Significance

Source Freedom Squares Squares F-Ratio Level

Incision 1 128.6808 128.6808 01.0538 0.000*
Error 1132 4690.7760 4,1438
Total 1133 4819.4668

Bartlett's Test for Homogeneous Variances
Number Degrees of Freedom - 1
F - 42.300 Significance Level a - 0.000*
* Sgniflcant at a less then 0.001 level

Table 7 indicated that the two textures, small and smaller incisions, differed significantly

(a < 0.001) from each other. The small incision blended better with the desert background than the

smaller incision. The Bartlett's Test indicated that the variances of the two textures were not
homogeneous, i.e., significantly different, so they are not necessarily from the same population.

Table 8 contains the nonparametric results of the Kruskal-Wallis One-Way ANOVA Test as a

check upon the Duncan's data. The Bartlett's Test indicated that the variances for the two levels
of texture were not homogeneous. Parametric tests, such as Duncan's, assume homogeneity of
variance,

Table 8
Kruskal-Wallis OnueWay ANOVA - Textures Small and Smaller

Incision Sample Size Mean Rank

Small 587 532.04

Smaller AU 602.96
Total 1134

Sample Size Chi-Squared Slgnlflcance Level

1134 13.2978 0.0003

Corrected for Ties
Sample Size Chi-Squored Significance Level

1134 16.3925 0.0001

These results are in agreement with those of Table 7.

3.3 Color and Incisions

It Is important to determine if the variables color and texture were independent of each other.
To determine this, a two-way analysis of variance was performed, and the results are seen in Table 9.
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Table 9

Two-Way Analysis of Variance for Color and Texture
Degreas of Sum of Mean Significance

Source Freedom Squares Squares F.Ratio Level
Colors 6 938.963 156.494 48.686 0.000*
Incisions 1 128.681 128.681 40.018 0.000*
Interaction 6 150.233 25.039 71786 0.000*
Error 1120 3801.580 3.216
Total 1133 4819.487

*Significant at a less than 0.001

This table verifies the results of Tables 3 and 6 with significant F values for colors and incisions.
It also shows a significant interaction between colors and textures, This means that for some nets,
the effect of either color or incision was more important than for other nets.

3.4 Nets

The following analysis was done to determine the best net(s) in their ability to blend with the
desert background. Table 10 contains the descriptive data,

Table 10

Mean Preference and 93.Pereent Confidence Interval
for Final Camouflage Nets on Ability To Blend With Desert Backgrounds
Sample Standard Standard 06% Confidence Interval

Nets Size Mean Deviation Error Lower Limit Upper Limit
Small Incision

1 81 6.42 1.2027 .1336 6.15 to 6.69
Ill 81 5.75 1.7141 .1905 5.37 to 6.13
V 81 4.32 2.4332 .2704 3.78 to 4.80

IX 81 2.81 2.3298 .2589 2.30 to 3.33
XI 81 6.23 1.6694 .1733 5.90 to 6.68

XII 81 5.31 2.2397 .2489 4.81 to 5.80
XIII 81 0.25 2.1362 .2374 4.77 to 5.72

Smaller Incision
a 81 6.44 1.2748 .1416 6.16 to 8.73
o 81 7.00 0.0000 .0000 7.00 to 7.00
o 81 5.52 1,4501 .1611 5.20 to 5.84
1 81 4.38 1.9658 .2184 3.95 to 4.82

k 81 5.58 2.1087 .2343 5.11 to 6.05
1 81 5.73 1 9040 .2116 5.31 to 6.15

m 81 6.16 1.2894 .1410 5.88 to 6.44
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Figum 3. Graphic Display of Table 10

An analysis of variance was performed upon the data in Table 10 to determine if there were
significant differences between the camouflage nets in their ability to blend with the desert back-
grounds.
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Table 11

Analysis of Variance of Nets as to Blend with Sites
Degrees of Sum of Mean Significance

Source Freedom Squares Squares F-Ratio Level
Noet 13 1217.8765 93.6828 29.1330 0.000*
Error 1120 3801.5803 3.2157
Total 1133 4819.4688

Bartlett's Test for Homogneous Variances
Number Degrees of Freedom - 13
F ,, 9.120 Signficanme Level a - 0.000*
*Slgnlfloant at a less then 0.001 level

Table 11 indicated that there were significant differences in the ability of the final desert nots
to blend with the background, The Bartlett's Test indicated that the variances of each net were not
homogeneous, i.e., significantly different, so they were not necessarily from the same population.

The Duncan's Multiple-Range Test (Table 12) was used to separate this set of significantly
different means into subsets of homogeneous means.

Table 1 2

Duncan's Multiple-Range Test - Final Camouflage Nets
amt wa

Subiet I Subset 2 Subset 3 Subset 4 Subset 5 Subset e Subset 7
Net Mean Net Mean Net Mean Net Mean Net Mean Net Mean Net Mean
IX 2.81 V 4.32 XIII 5,25 k 5.58 1 5.73 m 6.16 I 6.42

1 4.38 XII 5.31 I 5,73 II 5,75 XI 6.23 a 6.44
e 5.52 I11 5.75 m 6.16 I 6.42 c 7.00
k 5.58 m 6.16 XI 6.23 a 6.44
1 5.73

I11 5.75

Not IX was the most preferred by the ground observers as to its ability to blend with the desert
backgrounds. Nets V and I were In the second-best group. Note that net IX and I were the same
color. The only difference between the two is the size of the incision. Net IX has small Incisions,
while net I has smaller Incisions.

Table 13 contains the nonparametric results of the Kruskal-Wallis One-Way ANOVA as a double-
check upon the Duncan's Test. This was done, because the Bartlett's Test indicated non-homogeneity
of variance and parametric tests, such as Duncan's, assume homogeneity of variance.
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Table 13

Kruskal-Wallls One-Way ANOVA--Desert Nets
Net Sample Size Mean Rank
I 81 707.63
I11 81 597.93
V 81 422.30
IX 81 244.13
XA 81 692.50
XII 81 558.17
XII 81 501.58
a 81 709.80
o 81 810.50
e 81 520.25
1 81 372.17
k 81 583.98
1 81 592.85
m Al. 631.41

Total 1134

Sample sle Chl.Squared Significance Level
1134 219.7193 0.000*

Corrected for Tlee
Sample site Chl-Squared Significance Level

1134 270.6542 0.000*

*Significant at a less than 0.001

These results are in agreement with Table 11.

4.0 SECTION IV .. DISCUSSION

Table 1 identified the seven nets, their color, and type of incision, that made the final six
preferred nets for at least one of the five desert sites, on their ability to blend with the background.
An inspection of Tables 2-5 indicated that color IX/i was the most preferred color in the ability to
blend with the desert backgrounds. It was significantly (a < 0.001) better than the second moat
preferred color Vie. The data in Tables 6-8 indicated that the small incision was significantly
(a < 0.001) preferred over the smaller incision in blending with the desert background. Table 9
shows a significant (a< 0.001) interaction between the variables of color and incision. This is in-
terpreted to mean that for some nets, the effect of color and/or incision size is more important than
for other nets. All colors are going to appear even lighter when textured with the smaller incision.
The smaller the inrision size, the more garnish material is visible, and the less "graying" out of the
color will result, due to the smaller shadows. Conversely, the larger the incision cut, the less garnish
surface is visible, and the more "graying" out of the visible color surface by the effect of shadows.
The effects of the interaction of color and texture are also seen in Tables 10-12, which identify which
camouflage nets were the most preferred in blending with the desert. Net IX is the same color as
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net i, only it has the small incision cut, while net i has the smaller incision cut. Yet net IX is all
alone in the group that best blended with the desert baclIround. Net i is in the second-best group,
along with net V, which has the small Incisions. Net e, which placed in the third group, had the
same color as net V, only It was textured with the smaller incision cut. For darker colors such as
XI/k, the smaller Incision cut created a lighter overall color and enabled the net to blend better
with the desert than the small Incision cut.

The parametric Duncan's Multiple-Range Tests and the nonparametric Kruskal-Wallis One-Way
ANOVA tests were In close agreement with each other. This occurred even though the Duncan's
Multiple-Range Test yielded a significant F value, Previous work by Neubert et al 3 had found
similar results. Thus it appears that the assumption that the variances must be homogeneous for
parametric statistics can be overlooked without obtaining invalid data.

5.0 SECTION V -- SUMMARY AND CONCLUSIONS

Eleven colors were selected for field evaluation in Saudi Arabia. Two incision sizes, small and
smaller, were also investigated. A total of twenty-four nets were made for this study. Twelve of
the nets had the small incision, and twelve nets had the smaller incision. The same color was used
on pairs of nets, i.e., 'one for the small incision and one for the still smaller incision. In addition
to these nets, a two-color net (i.e., one color on each side) was developed for each Incision size for
evaluation in both light and darker desert areas, Two standard U,S, Army desert nets were also
included for control and comparison purposes, making a total of twenty-six hexagon nets. The
small-incision nets were Identified' by Roman numerals I through XIII, The smaller-incision nets
were identified by the lower-case alphabetical letters a through m, Test nets V and e had a different
color on each side, and nets VIII and h were the standard U.S. camouflage nets. A total of five
different sites were selected in Saudi Arabia. They were viewed by sixteen male subjects (seventeen
for site 1), The nets were evaluated on their ability to blend with the desert background, A statistical
analysis of these ratings produced the following conclusions:

A. The most effective color was IX/I for blending with the desert background.

B. The small Incision produced a net that blended better with the desert background. An
exception to this finding can occur when the net color Is dark, such as color Xl/k (Tables 10 and
12).

C. Net IX was the most effective in blending with the desert background.

6.0 SECTION VI .- EPILOGUE

As stated in Section I, this study was done for SANG. The standard U,S, Army desert net,
identified in the test as nets VIII and h, remained in use with 113. forces with minor changes.
However, with the advent of Desert Shield, the U.S., based on the results of the SANG program,
began a special purchase of net IX for shipment to Saudi Arabia.
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Maintaining lrL',entaI Optimality when Building
Shorter, Fvuclidean Tours

TM. ,'rofin
CECOM Center for Signals Warfare

Warrenton VA 22186-&51•

Abstract.

Reported upon are experimental runs of an algorithm designed to maintain incremental optimality when
building tours for the Euclidean traveling salesman problem. Unlike the Lin-Kernighan edge exchange or Padberg.
Rinaldi branch-and-cut techniques which begin with suboptimal tours and proceed by iterating in an attempt to
converge upon or exceed the Held-Karp lower bound, the new algorithm strives to maintain optimality as each city is
inserted. In previous Army research at the CECOM Center for Signals Warfare, proofs were obtained to show that
the underlying search space for the Euclidean traveling salesman problem is piecemeal quartic and hyperbolic. To
exploit this new knowledge, the author has developed a dynamic programming algorithm which begins with a
baseline tour consisting of the outer (inner) convex hull of cities, and proceeds by adding a city at a time to the
interior (exterior), How the city is inserted into the existing tour is dIctated by a set of quartic and hyperbolic loci
which separate existing and hypothesized subtours from each other. The insertion may involve three different non.
linear operations: hyperbolic extension, quartic shunting, and quartic interchange. To test the efficacy of these
operators with regard to type 1 and 2 statistical errors, the algorithm as currently implemented is run against a
benchmark of city databases for which the optimal tours are known. For those runs which result in a suboptimal
solution, an explanation is sought to facilitate fixes to the formal design specification, and the code is subsequently
changed, In this paper, the most recent set of runs is analyzed and reported upon, and a prognosis for scaling up to
large databases is forecast. The theory predicts that a run should consume time as a function of n3, where n is the
number of cities- this bound is checked empirically by plotting city size vs. CPU time for several databases.

Breckground.

The Euclidean traveling salesman problem [ETSP] is a long-standing problem in optimization, having
roots and primary development in the field of operations research, with ancillary developments in the fields of
computational geometry and graph theory. As is the case with many obtuse problems in mathematics, the ETSP
may be succinctly stated, Given a set of cities and the distances between each pair, find the shortest tour which
visits each city exactly once, except the start city, which is revisited at tour's end, A totur is simply a closed loop
connecting all the cities; the formal mathematical name for a tour is a Hamiltonian cycle. One of the interesting
facts discovered early on is that a tour is not permitted to cross itself [F1]. There are (n-l)l / 2 possible tours
through n cities, which is a combinatorially prohibitive number of operations to perform by brute force, so it is
therefore desirable to find an algorithm which arrives at a solution in polynomial time, The ETSP is a special case
of the general traveling salesman problem, the former bearing the distinction that the metrics involved are Euclidean
distances rather than arbitrary costs or weights,

To date, the Euclidean traveling salesman problem remains unsolved, By "unsolved", it is meant that no
one has developed a formal proof of optimality for a polynomial-time algorithm guaranteed to produce the shortest
tour. In tho mid-seventies, it was proven that the ETSP is NP-hard [01], This is a somewhat loss damning
complexity result than that obtained for the general traveling salesman problem, which belongs to the NP-complete
class of problems [02]. There have been two camps of researchers working on the Ruclidean version of the problem,
with the earliest computational work dating back to the end of the second world war [L2], The first camp has striven
to produce an exact solution to the problem, and in doing so has pioneered advances in the field of linear
programming, including such techniques as the simplex algorithm, branch-and-bound, and branch-and-cut [Pi]. An
exact appreach faves precision at the cost of performance. The second camp of researchers has settled for an
approximate approach, by resorting to heuristics which produce high quality solutions per unit of processing time.
The principal heuristic techniques are k-opt edge exchange (the most advanced of which is the Iterated Lin-
Kernighnn), simulated annealing, genelic algorithms, elastic bands, and neural nets [J 1], Generally, the approximate
techniques develop a solution with more speed than exact approaches, at the cost of precision. However, even this
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generality is moot, because some o" the heunst;: Approaches render solutions orders of magnitude faster than others,
with only marginally inferior solutions,

Applications.

There are a myriad of applications for the traveling salesman problem. Among them are job scheduling,
resource-constrained scheduling, optimt component placement, minimal hookup wire, lowest transmission power,
and path-constrained network flow [L2, Ji], The structural similarities between the problems may be somewhat
subtle. For example, to map the traveling salesman problem onto job scheduling, the names of the cities are
replaced by job names, and the costs between cities are replaced by the job setup times between respective jobs, The
job times themselves are considered to be constants; the setup thnes between jobs turn out to be the crucial factor.

Some of the applications have been shown to be NP-complete problems (e.g., resource-constrauted
scheduling and path-constrained network flow), aid therefore have failed to yield to polynomial-dime algorithms
[02]. Thus, it would seem preferable at this point in time to approach such problems with approximate techniques.
However, in the long term, if a polynomial-time exact solution may be obtained for the Euclidean traveling
salesman problem, then it may be feasible to map the resultant algorithm onto one of the harder problems In such a
way that a high quality (albeit suboptimal) solution Is achieved. This mapping is arguably most suitable for that
class of problems for which the triangle inequality is valid.

Verifying the Optimality of a Tour.

To test a ETSP algorithm (whether it be exact or epproximate) against large detabasow, It Is ncassm), tLo
have at hand some technique to verify an optimal solution In polynomial time, For city databases of slxbc C.am
hundred or less, It Is possible to use a variant of branch-and-bound to check optimality in reasonuble compixter i lmni
[31], However, when n becomes much larger than one hundred, certifying optimality begins to consumo
unreasonable amounts of time. It Ik for this reason that a technique based on computing a lowor bound on optimal
tour length has been developed [Hi]. This quantity, known as the Held-Karp lower bound, is computable in
polynomial time, and empirical results indicate that it is consistently within two percent of optimal [JII, Scientists
inthe field of operations research have made good use of the bound, Rather than strive for an optimal tour,
researchers instead attempt to come within a reasonable neighborhood of the Held-Karp bound.

The Discovery of the Nondlinear Search Space for the ETSP.

Despite over forty years of intense study by computer scientists and operations research analysts, the search
space for the Euclidean traveling salesman problem remained unspecified as of 1990 (i.e., It was not known whether
the mathematics of tour construction was linear, non-linear, or transcendental in the number of cities). This lack of
knowledge prompted the author to conduct experiments during the winter of 1990, in an attempt to characterize the
space by leveraging the recently developed field of computational geometry upon die problem. In 1968, researchers
at the Johns Hopkins University reported upon a slight modification to a theorem due to Barachet to show that an
optimal tour must preserve the order of the convex hull of cities - the shortest tour must contain these cities in the
order in which they appear about the perimeter [B 1, B21, This fact suggested that an experiment which inserts an
arbitrary city into a hull could serve as a valuable testbed in which to discover the geometric locus of equal hull
perturbation. A perturbation is a subtour which leads into the interior of the hull through two adjacent hull vertices,
to capture cities which do not lie on the hull, In conjunction with a perturbation we introduce the elliptic distance
between a segment and a point p, which is defined to be the sum of the distances from the endpoints of the segment
to p, minus the length of the segment,

When comparing a perturbed hull segment against another perturbed segment, one is actually comparing a
confocal system of ellipses against another, under a continuous spectrum of elliptic distances, The foci of the two
families of ellipses are respectively the two endpoints of the hull segments being perturbed. In Army research at the
CECOM Center for Signals Warfare performed during the 1990 fiscal year, it was discovered that the search space
induced by the Intersection of the two confocal systems of ellipses Is in general fourth order (quartic), and in spccial
cases hyperbolic [C21. The same non-linear behavior is manifested as more cities are added to the interior, which
means that the general search space Is piecemeal fourth and second order regardless of the number of cities added to
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the tour from within the hull. Dynamic programming immediately suggested itself as an approach to the problem
which might provide the famework to keep track of the quartic and hyperbolic boundaries of equal tour perturbation
when a new city is added to the existing space. Armed with the the new information about the non-linear search
space, the author has proceeded to develop a dynamic programming algoithm to maintain incremental optimality
when building shortest Euclidean tours.

A Dynamic Programming Algorithm for the ETSP.

The algorithm is based on a principle of incremental optimality: the shortest tour containing k cities is a
quartic and hyperbolic function of the shortest tour containing k-i cities. Beginning with a baseline tour consisting
of the convex hull of cities (the smallest bounding polygon containing all of the cities), one city at a time Is inserted
into the tour in an attempt to preserve the original optimality guaranteed by the hull. As currently specified by the
algorithm, there ae three types of topologies to maintain in parllel when developing a tour, First, the tour may be
simply extended by inserting the new city into the space between those two cities for which the elliptic distance Is
smallest; this topology is termed extension apace. A second topology is one in which the new city causes a shunt
to be formed between two existing perturbations, to form a new perturbation between the two older ones; this
structure is called shun space. The final topology Is one which deals with interchanges between perturbations which
are "across the hull" from each other; this structure is termed interchange space. Extension space is designed to
capture the hyperbolic discriminator inherent to extending an existing perturbation, whereas shunt and Interchange
space are models of the quartic discriminator instructing when to perform a global merger of perturbations.

A nested hull decomposition is computed during a preprocessing step. The decomposition may be
computed in 0 En * log n ] time, as proven by Chazelle [CI]. The nested hull structure, also known as the "onion",
is devised to control the order in which the interior cities are inserted. To limit the generation of gr4eedy
perturbations, those cities nearest the outer hull are Installed first. The set of hulls is visited one at a time, and each
hull is traversed in a counterclockwise fashion, until the set of all Interior cities is exhausted, Therefore the order of
insertion Is dictated by a major key equal to the ordinal number of the hull in which a city resides, with a minor key
equal to the relative counterclockwise position within the hull (N.B., there are exceptions based on the angle which
the city forms with the tour), An alternative strategy is to begin with the innermost hull (the core of tlhe onion) and
probe outwards one hull at a time until all exterior cities am processed. Since the quartic and hyperbolic boundaries
extend both inside and outside the boundary defined by the current tour, the theory guarantees that it is legitimate to
process the nested hull decomposition in either direction, with the same optimal solution produced regardless of the
procesming order. An example of bi-dlrectional processing is demonstrated in the appendix for the capitals of the
forty-eight contiguous states of Amerkia.

The City Databases,

Seven sets of data (Fig. 1) are currently being used ar a tostbed for the dynamic programming algorithm,
The first Is a ten city problem published by Barachot in 1957 [Bl]. The optimal tour for this small problem is
discusned and derived below, T1he second set is a sixteen city problem which appears in a seminal computational
geometry textbook [P2]. The third, fourth, and fifth sets are databases of twenty, thirty-seven, and forty-one cities
which were generated to exhibit non-random behavior; they respectively represent a hull containing a single loop of
interior cities; a block letter "E"; and a block letter "S". For these three databases, the shortest tours are not known
with certainty (insufficient resources precluded certifying optimality with the branch-and-bound technique utilized by
the operations research community), but it is conjectured that they consist of the visually-obvious structured
boundaries of the hand-crafted figures. The loop datasot is discussed below, and a temporal history of the conjectured
optimal tour Is contained in the appendix. The sixth dataset is a forty-eight city problem solved to optimality by
AT&T Bell Laboratories in 1985 [Al], The development of its optimal solution Is also contained in the appendix;
both an inside-out and outside-in nested hull traversal are graphically portrayed, with the same optimal solution
being obtained. The seventh and last dnlaset is a one hundred twenty-seven city problem formulated by the
University of Augsburg in 1989 [RI]; this dataset has recently been solved to optimality by the new algorithm, but
a detailed description of the optimal tour is not included here, since it will serve as a primary example In the
development of a theorem to be published in a forthcoming paper [C3].

Also described below is a set of experiments in which eighty sets of cities are generated at random to be
used as databases to test the analytically-derived time complexity bound for the dynamic programming algorithm.
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For thesn eighty databases, the optimal tour lengths are unknown but are not required, for the sole purpose in using
the cities Is to statistically test the run time performance of the current implementation of the algorithm, independent
of the fact that the solutions developed may not be admissible.

Database Opntlimalitt Known? Lena b of Cpndmal Tour n 0

Batchet Yes 948 10
Prpaorath Yes 1774 16
Loop No 1919 20
EHfigure No 1258 37
S-filugm No 1770 41
Capitals Yes 3352 48
Augsburg Yes 4731 127

Figure 1. The seven benchmark databases, with auuoclated optimality Information. The tour
lengths are expressed as a function of pixels of the computer raster.

An Analysis of the Darachet Dataset,

Figure 2 Is a visual graphic of a shortest tour evolving In time as interior cities am Incrementally processed,
The data Is the Barachot dataset, published In 1.957 (1]. The original constollation of cities is shown In the upper
left corner, followed by a graphic of the convex hull, which in this case is simply a square. The dynamic
ptoipoammlog algorithm then proceeds to add each of the five Interior cities to the tour, The simple extensions,
represented by the HE operator, turn out to be not very Interesting. The insertions which produce the most profound
changes are the Interchange operators, desilnated He, As an example, the last state (frame nine) is produced by an
interchange. The extension shown in the next.to-last frame causes the upper perturbation to yield two cities to the
extended perturbation as at frame nine, while at the same time producing a new perturbation from the top, which was
seen once before at fatme number three. Of course, the sequence would look quite different if the interior cities were
to be Inserted In an order other than that dictated by the process of nested hull traversal, but the final tour would look
the same,

Hull HE HE Hs

HE HE HE HS3

Figure 2. Incremental Optimality Portrayed for the Barachet Data

An Analysis of the Loop Ditaset.

Figure 3 is a tabular description of the algorithmic logic manifested when processing the twenty city loop
figure (a graphic temporal history of the logic is contained In the appendix). Although the extension and shunting
operations are well represented, them am no croa-hull interchanges which occur in this database, The deferral
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operations occur because the city under consideration forms a more acute angle with the current tour than does some
other sample in the queue of interior cities. In such cases, the city forming the more acute angle is placed back in
the queue, and the other city is brought forward for processing. Actually, the deferral and extension operations are
mundane when compared to shunts and interchanges, The two interesting insertions for this dataset are the shunts
introduced by the addition of cities 19 and 112, both of which radically alter the global tour shape. In particular, the
Insertion of city 112 causes the lower right portion of the tour to change from a "fishtail" shape to a concave loop.
It should be emphasized that the insertion of the cities in some other order might cause the ultimate loop behavior to
be displayed earlier, but the algorithm is designed to display the shortest tour for only the cities which are currenuy
entered. A partial tour for k cities may or may not structurally resemble the shortest tour for all n cities.

Entered City Insertion Operation Relevant Subtour

15 defaal-
119 extension (4,19,20)
15 extension (4,5,19,20)
116 extension (20,16A)
115 extension (20,16,15,2)
114 extension (20,16,15,14,2)
113 defam -l
112 deftral
117 extension (20,17,16,15,14,2)
113 extension (20,17,16,15,14,13,2)
112 deferal
118 extension (20,18,17,16,15,14,13,2)
112 defbm -l
17 extension (4,7,5,19,20)
112 delbe-
16 extension (4,7,6,5,19,20)
112 deWNlW
is extension (4,8,7,6,5,19,20)
112 defemdrl
19 leftsided shunt (3,9,8,7,6,4,5,19,20)
112 leftaided shunt (4,5,6,7,8,9,12,13,

14,15,16,17,18,19,20)
110 extension (4,5,6,7,8,9,10,12,13,

14,15,16,17,18,19,20)
Il1 extension (4,5,6,7,8,9,10,11,12,13,

14,15,16,17,18,19,20)

Figure 3. The dynamic programming result for the twenty city loop figure. The Insertions of
cities 19 and I12 produce back-to-back shunting operationas each of which radically alters the
visual appearance of the optimal tour, A temporal history of this example (the loop dataut) IN
contained In the appendix.

An Analysis of the United States Capitals Dataset.

The appendix concludes with two graphics which depict the development of the shortest tour for the forty-
eight capitals of the contiguous United States. The, first graphic demonstrates the same approach described above for
the Barachet and loop datasets: i.e., a baseline tour consisting of the outer hull is established, and and the interior
cities are inserted incrementally by probing inward one hull at a time until all cities are exhausted. The first
interesting behavior occurs at row three, column five, with the introduction of Little Rock: Oklahoma City and
Jackson are interchanged Into Little Rock's new perturbation. Another interchange occurs at row four, column two,
when Frankfort is extended into Charleston's perturbation, which subsequondy causes Montgomery to be
interchanged from below. Yet another interchange occurs in row four, column six, when the introduction of
Cheyenne first causes extension space to transpose Bismarck with Pierre, and then forces the interchange of Salt
Lake City. The final interchange occurs In row five, column three, when the newly Introduced city of Lansing

129



compels the cities of Albany and Harrisburg to be absorbed into Lansing's perturbation. By far, the most dramatic
behavior is encountered at row six, column seven, when the introduction of Springfield forces a left shunt.
Springfield is originally attached by extension space between Nashville and Frankfort, but the shunt operator then
links it to Jefferson City and synthesizes a now perturbation issuing from the hull segment with endpoints
consisting of Baton Rouge and Tallahassee. The final tour shown in row six, column 2 was proven optimal by
AT&T Bell Laboratories in 1985 [Al].

Turning to the second graphic in the appendix concerning the forty-eight capitals, the alternative convex
hull approach is utilized. This time, the initial tour consists of the innermost hull in the nested decomposition,
with vertices comprised of Des Moines, Springfield, Indianapolis, and Columbus. The nested hulls exterior to this
hull are subsequently processed, beginning with the one nearest to the inner hull. Because. the quartlc and hyperbolic
loci remain valid regardless of the processing order, the same optimal tour is ultimately obtained at row six, column
two.

Some Remarks about the Augsburg Dataset,

The Augsburg datasot consists of the locations of one hundred twenty-seven beer gardens In the city of
Augsburg, Germany. This dataset has been solved to optimality by German researchers at the University of
Augsburg, using a variant of branch-and-cut JRi]. The same optimal tour is obtained by the dynamic programming
algorithm described in this paper. However, analysis of this dataset will not be described here, since it will serve as
the primary example in the development of a theorem to be published in a forthcoming paper [C31.

Scaling Up: a 332-City Dataset.

A five hundred thirty-two city dataset was developed by Shen Lin when he was employed at AT&T Bell
Laboratories, and represents the locations of AT&T telephone offices in the contiguous United States, A certificate
of optimality has been obtained for this data by the originators of the braoh-and-cut algorithm [Pl]. This database
is intriguing because it is the largest database certified to date for which tde cities are randomly positioned in the
plane (a 2392.city dataset has been solved, but the constellation of cities is formed by repeating the ane simall
pattern of cities several times), The dynamic programming algorithm has not yet been brought to boar upon this
database, but it may be feasible to describe the result of its application in the same paper in which the one hundred
twenty-seven city solution is discussed.

Time Complexity: A Worst.case Analysis,

The dynamic programming algorithm is continuing to evolve as a research and development tool, and as
such remains suboptimal. Nevertheless, it is instructive to perform a worst-case analysis of the code as currently
implemented. A condensed algorithmic flowchart is shown at Figure 4. The label "In" is the input loop, in which a
new city is input from the front of the queue of unprocessed interior cities. Upon entry from the queue, the city is
processed by a routine which checks for intra-perturbalion optimality. The new city is first compared against every
segment in the current tour to discover the segment of least elliptic distance. This segment may or may tici contain
the new city's nearest neighbor, so a subroutine is called to check the tour length if an alternative hypothesis allows
the connection to occur. To encourage the gradual introduction of cities relative to the perturbed hull, if some other
interior city forms a larger angle with the current tour, it Is brought forward for processing and the candidate city is
put on hold. The Intra-perturbation routine concludes by reordering the city's perturbation if necessary to achieve
optimality.

Next, a global heuristic is applied to determine if some lour segment forms a larger angle with the newly
inserted city thwn the segment to which it was attached locally via the elliptic distance computation. The global
interchange operator attaches the city to such a segment if it exists, and triggers a quadratic matching operation in an
attempt to absorb cities from other perturbations. Next In the processing sequc"ce is the synthesis of the left and
right shunt topologies. The extended perturbation is attached to both the nearest perturbation on the left and the
nearest perturbation on the right, and new perturbations are generated respectively to the left and the right, between
the perturbations maintained by the extension space. Once the shunts are computed, the tour lengths for the
extension space, the left shunt space, and the right shunt space arm compared, and the minimal topology is preserved.
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At this point, the interchange operator Is invoked once agin to absorb cities from other perturbations. using the loft
and right extension edge. of the new city's position as a baseline perturbation. To wrap up the processing of the
city, somne houisekeeping operations are performed to commit the tou and its lengt to computer memory, before
returning to the input loop to process any remaining Interior cities.

In Locat the perturbationpo
an dhe citycfto laegewangleI

mondinprceinase

Compare the tourtlrngthonfo

[Find the itearest city in tie 1 the left inhunt space, the rightI
tour to the new city j shunt space, snd the etne

Attempt to locate another
interior city which forms a
perturbed segment Call the Interchange operator

_________________ on the city, using the left and
tight extension edges

IReorder the extended ___________________________________________
Iperturbation for
[intra-perturbation optimality IUpdate the length of the tour

Iand set the last-current-tour to
the current tour

Locate the tour segment
which forms the largest
angle with the inserted city

Figure 4. A high level flowchart of the dynamic programming algorithm as curriantly
Implemented. For the sake of brevity, several comparison operations of complexity 0111 have
been omitted. An Interchange operation (double box) to wisltiveiy expensivel each Interchange
entaiis a quadratic matching, four sorts, and four linear searches.

As the ktb city is processed, it Is possible for it to trigger two searches of quadratic compluxity, eight sorts,
each of complexity Viol; k,. and fifteen searches of linear complexity. All of the boxes in the flowchart represent
processes of linear complexity or faster, except for the two double boxes representing the Interchange processes. The
Interchanges are mome expensive, in ;hat they involve quaadrtc matching and sorting In a quest to globally merge
perturbations which may lie on oppusite sides of the hull. Finn"' ' :'re is a constant overhead ros associated with
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the computer operating system and hardware suite. Therefore, the worst-case processing time tw is bounded by the

following cubic expression:

tw = Z [2k 2 + Bk*logk + 15k + Cog]

S2/6n*(n +1)*(2n+1) + 8/2n* (n+1) * Iogn + 1/2n*(n+1) + Cosn

- 2n 3 + 4n 2 *logn + 7/2n 2 + 4n*logn + (3/2+t.os)n.

Complexity theorists refer to such a bound as a ceiling function, because it is derived empirically from an
algorithm which has not yet been proven to be optimal, and in general must be considered inferior to a theoretical
bound on performance. Conversely, a floor function is obtained analytically from worst-case analysis of an
algorithm known to terminate with an optimal solution (usually, once a floor function is established by theory,
progress is rapid in bringing an algorithmic ceiling function down to converge upon the floor function), Since a
floor function has to date not been established for the Euclidean traveling salesman problem, it is necessary to
attempt to empirically lower the ceiling function by resorting to heuristic techniques, The operators depicted in the
flowchart are heuristic techniques designed to model the non-linear search space reported upon at (C2], The intrapath
operators at the left represent the hyperbolic portion of the locus, while those on the right approximate the
discriminator for the fourth-order components. Many of the minor processing steps which are of sublinear
complexity are intentionally omitted, to afford the reader as concise a view as possible of the global logic. The
author wishes to ste that the implementation is at best a stopgap measmure, which is a useful research tool only
until more geometric facts about the search space become available. Indeed, the suggested implementation is already
obsolete, due to a new theorem with the potential to dispatch a significant portion of the interior cities during a fast
preprocessing step (C3].

An Experiment to Test the Validity of the Analytic Cubic Bound.

Tables 1.8 on the next page are a compilation of a set of experiments designed to test the validity of the
cubic bound developed in the preceding section of the paper. The algorithm as currently implemented was tasked
against sets of cities randomly distributed on a computer screen (the author used the computer mouse to rapidly input
a set of random points to the screen, which were then utilized as coordinates for a city database). The number of
cities simulated waR allowed to vary from ten to forty-five, in increments of five, For a specific number of cities n,
ten sets of random data of size n were generated. Each set was processed by the dynamic programming algorithm,
and the following parameters were monitored by the computer operating system: space (the number of Lisp cons
cells, or computer words, consumed by the run); time (the number of seconds of central processing unit time
consumed by the run); and allocation (the number of seconds of CPU time devoted to dynamic reclaiming of
memory, using the Lisp garbage collector).

Only the CPU time (the central column of each dataset) was analyzed statistically. The sample mean,
variance, and standard deviation were computed for each set of CPU time data. In addition the best and worst run
time outliers were selected for each set. It was anticipated that the worst case outlier would be a good candidate to
compare against the cubic bound predicted by the analysis.

Figure 5 is a line graph of the experimental results. For the eighty runs of the algorithm listed in the
appendix, the best-case, average-case, and worst-case running times are plotted for each of the eight groupings of ton
cities, Also included in the same plot is the cubic bound; the bound is computed for each value of n, and is scaled
by the constant .0075 to rendcr the graphic more compact in the ordinate dimension.

It is perhaps imprudent to extrapolate for values of n larger than those shown, but the cubic bound predicted
by the theory appears to be a reasonable ceiling function for the worst-case performance of the algorithm. Although
there is a gap between the bound and the worst-case outlier, there are valid explanations. One explanation Is that an
insufficient number of samples were selected to see true worst-case behavior. Another explanation Is that the author
was oveny conservative when conducting a worst-case analysis of the computer code, causing the cubic bound to be
somewhat inflated. Yet another explanation is that a more judicious selection of a scalar rmultiplier of the cubic
expression could close the gap. The important thing to note is that the bound is visually well-correlated with the
v.Jrst-case plot, and that the general behavior of the two curves is marke ',y similar.
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Space Time Allocation Space Time Allocation

1 7337 12.599 3.380 1 102662 121.708 58.073
2 5943 9.739 3.689 2 101337 125.221 61.622
3 3271 5.717 1.480 3 92058 98.096 66.107
4 2772 4.879 0.000 4 108662 132.876 64.330
5 2539 4.342 1.267 5 104230 129.015 62.486
6 4726 8.155 2.326 6 108849 134.460 66.508
7 3641 6.437 1.579 7 82841 97.734 46.839
8 3314 5.714 1.630 8 103552 68.177 119.213
9 3245 6.021 1.427 9 84362 133.353 285.494
10 4192 7.116 1.399 10 101140 124.738 59.313

n = 10, X =7.712. S2 =10.130, S=3.183 n = 30, X=116538, S2=469.822, S=21.675

1 10841 16.515 1 5.122 1 150861 185.943 101.698
2 11926 16.248 8.381 2 121924 152.557 86.844
3 13918 20.285 7.593 3 161438 197.643 114.430
4 13347 18.926 8.388 4 186448 246.866 129.780
5 17042 23.476 9.775 5 163579 204.787 114.469
6 15003 20.873 9.793 6 161428 212.644 112.123
7 9214 13.009 5.688 7 178192 227.529 121.439
8 20864 31.220 11.403 8 214286 295.458 152.270
9 9755 13.709 6.302 9 180710 196.557 105.282
10 13369 19.800 7.806 10 156222 167.035 64.046

n 5 = i. X=19.406. 2=27.906, S=5.283 n = 35, X=208.702, S2 =1671.621, S=40.8&5

1 31893 39.953 18.919 1 209331 224.835 98.215
2 39848 52.327 23.654 2 241452 267.132 99.419
3 31961 41.991 19.001 3 206614 212.946 85.847
4 33496 44.131 19.732 4 263413 295.444 115.531
5 28844 36.980 18.365 5 295821 348.702 136.283
6 41600 50.265 28.959 6 239564 257.743 110.176
7 27420 36.007 17.767 7 229468 263.191 106.129
8 27191 34.494 17.022 8 223627 239.093 97.718
9 29502 37.315 17.940 9 216796 249.739 96.802
10 28340 35.103 18.456 10 210261 244.238 91.558

n = 20, X=40.857, S2 =39.732, S=6.303 n = 40, X=260.306, S =1492.335, S=38.631

1 63375 72.603 38.143 1 329234 389.722 244.246
2 50002 47.761 41.782 2 354376 411.498 156.177
3 48373 56.510 27.231 3 382554 490.126 179.530
4 52179 67.577 30.072 4 426650 593.475 208.267
5 53730 65.259 32.730 5 293465 301.532 114.221
6 63618 77.347 39.047 6 404882 505.157 173.208
7 67187 81.024 40.680 7 384530 530.231 278.536
8 64343 78.275 37.596 8 341033 413.296 213.390
9 62891 75.275 35.368 9 335337 389.147 196.894
10 49037 56.832 28.396 10 278591 344.297 178.995

= 25, X=67.846, S2 =123.389, S=1.108 n = 45. X=436.848, S2=8147.415, S=90.263

Tables 1-8. Space, Time, and Allocation Complexity for Eight Sets or ETSI' Experiments

(n Is the nimher of cities per experlment; Space Is the nuniber of Lisp cons cells consumned by a run;
Timp k the numnber of seconds of (CPT; time consumed by a run; and Allocation is the time dedicated
to the il p ,a;W -•e collector)
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Figure 5. A line plot of the time complexity of the dynamic programming algorithm as a function

of the number of cities processed.

Summary.

Some very preliminary statistical experiments on the worst case behavior of an algorithm designed to
provide an exact solution for the Euclidean traveling salesman problem indicate that the run time of the algorithm is
in fact bounded by an expression cubic in the number of cities. The algorithm is based on some recent theoretical
results pertaining to the non-linear search space for the Euclidean traveling salesman problem, and as such the
computer code has not yet reached an optimal level of maturity. Nevertheless, it has proven useful to statistically

compare the performance of the dynamic programming algorithm against the cubic bound predicted by a cursory
examination of the currently implemented software. The worst-case statistical outliers compiled for each set of
experiments are indeed bounded by the cubic expression developed analytically from the current formal design
specification of the algorithm. It is apparent that the science of statistics is invaluable with regard to gauging the
probabilistic performance of an algorithm versus its analytic time complexity bound.

Future Directions of the Research.

An entirely independent issue is whether or not the algorithm is admissible: i.e., whether it terminates with

an optimal solution. It is desirable to attempt to prove that the dynamic programming technique is admissible; a
proof by induction seems promising. Thus far, the implementation is proceeding in the spirit of the Hungarian

mathematician Lakatos, who contended that a theory is never truly proven until sufficient time has passed such that

the community at large accepts the theory, based on the fact that counterexamples cease to be forthcoming from

empirical testing [Ll 1. The implementation discussed in the paper is at a stage where counterexamples can still be

found. However, the author feels that the counterexamples are sufficiently trivial to be local rather than global,

which indicates that the problems remaining to be ironed out are details of implementation rather than profound

issues of conceptualization. It secms important to pursue the proof of optimality; otherwise, the new algorithm will
he vulnerable to the same kinds or criticism which plague all heuristic approaches to problem solving.

The algorithm will continue to undergo empirical testing, as the number of cities is scaled up. A good
sv)urce of benchmarks is maintained at reference IRI]. As mentioned above, a one hundred twenty-seven city database
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has recently boon solved to optimaity by tho dynamic prograimming algorithm. Itis desirable in 1991 to move
ahead to a five hundred thirty-two city certified benchmark [Pt]. Unfortunately. them we only a handful of large
databases for which a certificate of optimality has been obtained.

In preparton Is a paper which desribas a now geouetri result pertianing to the aspect angle which mr
interior city forms with the convex hull, and the positive implication of the result as a preprocessing stop for the
dynamic programming algorithm (01]. It is ptremature to forecst the utility of the new theorem, but empirical
testing Indicates that on the average a surprisingly large percentage of cities interior to the hull may be inserted into
the tour in a fust preprocessing sgap.
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AN ALGEBRAIC DERIVATION OF VARIANCE
OF THE GEOMETRIC DISTRIBUTION

Richard M. Brugger
Product Assurance and Test Directorate

U.S. Army Armament, Munitions and Chemical Command
Rock Island, Illinois 61299-6000

ABSTRACT. Typically, the variance of the geometric distribution is
deri•-dil--f-6-g generating functions or moment generating functions. This paper
provides an alternative using algebra only.

1. INTRODUCTION. Consider an unbounded sequence of Bernoulli trials,
eachtria-Tivh-jn-a-- -obability p of success and probability q = 1 - p of
failure. Let X denote the trial number of the first success. Then X is
distributed geometrically.

The geometric distribution plays an important part in many probabilistic
considerations. For example, it is the underlying reliability distribution
for an item that functions discretely with an assumed constant failure rate,
such as a gun. It also plays an important part in sampling plans. Dodge's
original work on continuous sampling plans, described below, incorporated
geometric distributions extensively.

2. DERIVATION OF DODGE'S h. Dodge (1943) used the following derivation
of a geom6-riTc distriLuifon cWuirtailed after i trials (where i is fixed, not an
index). For the remainder of this paper 0 < p < 1 and thus 0 < q < 1.

h = 1 (p+2pq+3pq 2+4pq 3+...+ipqi-) (la)

1-q
1

p= (l+2q+3q 2 +4q3 +...+iq i-1 (b)

l-gi

p d (l+q+q 2 +q3+'...+qi) (lc)

l-q dq

p d (I-qi+l) (1d)

l-q dq 1-q

Considering only the derivative portion yields
d (1-~g '" (I - )-(l-qi+1) -I) (a

( _ q( -q)(-(i+l ( a

-- 2
dq l-q p

= p-i -11q) (2b)
2

P

1-t--u(2c)
2
p
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So

h i 1-ql(1+P) (3a)

S I (1-q, (1+pi)). (3b)

p(1-q7 j

Brugger (1989) provided the following. Returning to the first expression:

h 1 1 (p+2pq+3pq 2 +4pq3 +.,.+Ipq1 ') , (1)

Since p - l-q, this becomes

h- 1 (1-q+2(1-q)q+3(1-q)q 2 +4(1-q)q 3 +...+i(1-q)q i-) (4a)
l-,q

1 (1-q+2q-2q 2 +3q2 -3q3+4q3 -4q4+...+tqt"l-1qt) (4b).7?
_ 1 (1+q+q 2+q3 +q4 +, .+iqt'-tiq ) (4c)
-T

The first i terms within the parentheses follow a geometric progression, so the
above becomes

1-q1  p l-q1

1-q& .1q (5b)
l.q- p p(1-qi)

* 1 (1-ql(1+pi)) , (5c)

p(1-q 1 )

This is the same as Dodge's result (see equation 3b), but in this latter case
only algebra was used to obtain the result.

3. DERIVATION OF THE MEAN OF A GEOMETRIC DISTRIBUTION. Using the method
described above, it is straightforward to derive 'te meIan, E(X), of a geometric
distribution:

E(X) w E jpqi (7a)
Jul

a lp+2pq+3pq +4pq3 +,.0 (7b)

a 1-q+2q-2q 2+3q2 3q 3 +4q3-4q4+,, (7c)

E 1+q+q 2+q3+q4+... (7d)
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1 = 1 (7e)
1-q p

4. DERIVATION OF THE VARIANCE. By definition,

Var (X) a E(X2 )-(E(X)) 2 . (8)

From equation 7e above

(E(X))2 liP2 (9)

Is obtained.

E(X2 ) u 1 j 2 pqJ-1 (lOa)
Jul

* p+4pq+9pq 2 +16pq3 +, (lob)

* 1-q+4q-4q 2+gq2 ,-9q3 +16q 3-16q 4 +,.. (10c)

*l+3q+5q
2+7q3+... (lOd)

It is claimed that the series in equation 10d will continue with coefficients
equal to the odd integers. This is easily proved. Let n be any positive integer.
Then

2 2 22 (an-(n-i) a n -n +2n-1 (Ila)

- 2n-1 (11b)

where the expression in lib is clearly an odd integer. Summing, we obtain
E(X 2) 1 (2j-l)qi-1 (12a)

Jul

-2 JqJ- q- 1 (12b)
Jul jul

_2 JpqJ-l 1 (12c)
p Julp

•2 1 1 (12d)P .

S21 (12e)
p p

Y 2• (12f)

p

S +1 (12g)

p
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- . . . . . . . . . . . . . . . . .

Recall1it, that

Var MX) E(X 2)-(E(X)) 2  (8)

it is seen that

Var W + 1 (13a)

p. p

* .a~.(13b)

5. EXTENSION TO THE NLGATIVE BINOMIAL DISTRIBUTION. If one is interested
in some posit ve integer n (n>l) of successes tn a series of Bernoulli trials
with constant probability p of success, the trial number of the n'th success is
distributed according to a negative binomial distribution, which is an extension
of the geometric distribution.

Then

E(Xi+X2 +...+Xn) - nE(X 1 ) (14a)

a n/p (14b)

and Var (X1+X2+...+Xn) nVar(Xl) (15a)

Snq/p2 (15b)
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A LINEAR PROGRAMMING MODEL FOR
QUEUEING IN OPERATIONAL AVAILABILITY

William C. Hoffman
P. 0. Box 2005

Sierra Vista, AZ 85635

AflTIU.L. Operational Availability A, is the term used to
refer to readiness of a military system for battlefield use. The
servicing of such a system can be divided into several otages, each
of which may be modeled by an Erlang type queue M/E /s, being the
number of service personnel. Maximum Operational %vailability
Js equivalent to minimization of Total Corrective Maintenance Time
(SCM) plus Total Administrative and Logistic Downtime (TALDT).
Under appropriate constraints the maximum A, problem can thus be
formulated as a linear programming problem.

1. INTRODUCTION. TRADOC/AMC Pamphlet 70-11, RAM RATIONALE
U -V, defines (p. E.18) Operational Availability A0 by
the iollowing formula:

A- (OT 4 ST)/(OT + ST + TCM + TPM + TALDT). (1)

Here OT a Operating Time, i.e., time during a mission profile when
the system is "on" and actively performing at least one
of its missions;

ST * Standby Time, i.e., the time during a given period when
a system is inoperative but is operable;

TCM m Total Corrective Maintenance Time, i.e., the total time
spent on restoring & failed item to operational
condition;

TPM w Total Preventive Maintenance Time spent in activities to
maintain an item in a specified condition;

and TALDT w Total Administrative and Logistics Downtime spent
waiting for parts, arrival of maintenance personnel,
or transportation, during a given period.

In a tactical situation Standby Time ST and Preventive Maintenance
Time PCM can frequently be neglected, in which case the above
formula reduces to

A0 - 1/[1 + (TCM/OT) + (TALDT/OT)].

It is clear from this expression that for given OT, A0 is maximized
by minimizing TCM + TALDT:

max A0 - min {TCM + TALDT).

147



The right hand side of this expression will provide the basis for
a linear prograinming approach to optimization of Operational
Availability.

The present approach was suggested by a requirement for
deciding among comp,•ting maintenance systems for a deployed IEW
network along the FLOT (Forward Line of Own Troops). The
maintenance structure consisted of as many as four stages: mobile
contact units (BMCT) which provided minimal repairs, usually in the
form of simple replacment of defective line replaceable units
(LRU's), at the FLOT; shop repairs (BS) at a forward level; mobile
contact units (LHCT's) dispatched from a rear light electronics
maintenance ucompany to handle more complex diagnosis and repairs;
and a rear echelon repair shop (LS) for major diagnosis and
repair/replacment. Associated with each level is a characteristic
MTTR (Mean Time To Repair) and an ALDT (Administrative and Logistic
Downtime) for maintenance. These parameters will play key roles in
the qusueing models for the maintenance process(es). Both the MTTR
sequence and the ALDT sequence may be modeled as a four-stage,
series Erlang queue M/E/s, where M represents "customers" (i.a.,
FLOT system elements wth defective parts (LRU's)) occurrina at
random according to a Poisson process, E4 denotes an Erlang
distribution representing a four-stage FIFO service protocol, and
a denotes the number of servers, i.e., maintenance personnel at any
given level.

2. Estimgtion of A diinistrative -and Logi~tic flowntime for
Maintenance !ALDTml . The expected waiting time at a defective LRU
site for maintenance personnel is given by the formula [Gaver &
Thompson, 1973, p. 505)

E{WALoTm}- a (MTTR)i ul/(l - ul), (2)

where the summation on i runs over the 4 stages and the
"utilization", or "traffic load factor", is defined to be

Ul - MTTRI/(a, MTBF), (3)

Here s, is the number of "servers" at st.age i, and MTBF is the Mean
Time Between Failures. If u, turns out to be greater than one, the
system saturates. Honce 0 < u < I will be assumed in the sequel.
Since then u/(1 - u) - u + E u k u, Eq. (2) may be written in the
series form

E{WALDTM} k E (MTTR)! u, w (I/MTBF) E (MTTR)j1 (1/sm). (4)

Apart from costs, the defining of an organizational structure
essentially resides in tho assignment of personnel and facilities.
To utilize (4) in a linear programming formulation of optimality
for A0 we therefore introduce as a new variable x,, the reciprocal
f osf, i.e., the reciprocal of the number of servers at stage i.
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Inequality (4) then becomes

E{WALDTM) a (1/MTBF) E (MTTRi) 2 X,. (5)

The introduction of the new variable x, makes possible formulation
as a linear programming problem, but it is not an unmixed blessing.
Being a reciprocal, the variate x will accentuate the tendency of
a linear programming problem to give solutions in non-integer form
and may also lead to instabilities for small assignments.

3. Estimation of Administrative and Loaistia Downtime for Trans~ort
ALDZt. In the present model, the Administrative and Logistic
Downtime awaiting parts from CONUS im neglected since it exceeds
the hypothesized time scale. It only rentins tharefore to
formulate ALDTt. Since transport is involved, only the mobile
contact teams, theBMCT's and the LMCT's will contribute. The time
involved may be estimated by distributing the total number of
manhours spent by each in travel between base and FLOT and equating
this to the TALDTt requirement:

E(TALDTt/F) - Probability{service by BMCT}.(Moan roundtrip time
from SN to FLOT)x + (6)

+ Probability{service by LMCT19(Mean roundtrip time from
LEMCO to FLOT) x3

These expected roundtrip times may be estimated either from data or
by dividing the doubled distance by the avrrage speed of the mobile
contact unit. The probabilities ot service by BMCT's or LrCT's are
estimated from appropriate decision trees.

4. Estimation of Corrective MaIntenance Time. The average time
required for corrective maintenance is tha Total Corrective
Maintenance Time, TCM, dividc4 by the mean number of failures:
TCM/F. In equilibrium this is the same as the MTTR divided by the
number of servers at any particular stage of the 4-level
maintenance process:

E{WcM} a E (MTTRI)/sa - E (MTTR,) x,. (7)

SjTh Objective Function. Combining the results of Eqs. (4), (5),
(6), and (7) leads to the following objective fuhction for the
maximization of A0:

min {TALDT + TCM} w mmin {(MTTR1 )2/MTBF 4 MTTRI +
+ distance,..rLOT/kmphWTlx1 + (8)

+ E•tI•(MTTR1)1/MTBF + MTTR1Jx, +

+ [(MTTR3)'/MTSF + MTTR 3 + distanceL8..LOT/kmphLMCT 1 3.
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5. The Constraints. It remains to formulate the constraints. We
need for this purpose the following result from elementary algebra:
If a/b1 , a,/b 2,...a /b. are unequal fractions all of whose
denominators are of the same sign, then

min(a1 /b,) s Eaj/Eb, s max(a,/b,), (i - 1,2,...,n). (9)

Relation (9) leads to the first of the constraints, the personnel
constraint:

E, 1 2,3 4x1 k (number of stages)/(total number of servers). (10)

The TALDTm constraint is given by (5); the transport constraint by
(6), and the TCM constraint by (7). There is also a constraint
imposed by limitation upon the number of vehicles available for
assignment as MCT's.

6. A Numerical ExAm2le. The application led to the following
linear programming problem (LPP):

mni{1.354xI + 0.1648X2 + 2.115X3 + 0.466x;)

subject to

TALDTm: 0.04XI + 0.0098x + 0.005x +0.066x4 a 0.07
TALDTt: x, + 2x Z min TZLDTt/F w 1.24
TCM1 0.314x + t.l 55x + 0.11x3 + 0.40x; k 0.5
No. personnel: x, + x2 + x3 + X4 k 0.36

Using STATORAPHICS, the LPP solution was reached after 5 pivots.
The objective function took the minimum value 1.81 hours. The
solution vector for the x, was

x - (0.00000, 0.27556, 0.62000, 0.97272).

Taking reciprocals, these values rNrrespond to personnel
assignments of

eMnI @. , Smm w 4 (03.6) p LMCT - 2 (*1.6) , and sLm m -,

which except for the BMCT value are eminently reasonable and do
correspond to assignments that were actually made in practice. The
continuous nature of the LPP solution is of course evident.
Software for an integer programming solution was not available, but
might have led to better results. The impossible value for sIe
presumably corresponds to the sensitivity mf reciprocals to small
values. However, such an extreme valua is consistent with the
intuition that in the short-term AirLand Battle, under a
replacement rather than repair philosophy ("design for discard"),
the major part of maintenance should be concentrated in mobile
units closest Zo where needed. Error estimates for this aspect of
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the problem remain open. There is also the matter of the problem
being ill-scaled in that the coefficients of the objective function
differ by as much as two orders of magnitude from those in the
TALDTM constraint, for instance. This feature is known on occasion
to make computer solution of LPP's impossible.
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The Making and Use of the "BIG MAC" Data Base

Fred M. Grimes
John Riemenschneider

Combat Arms Test Directorate
TEXCOM Combined Arms Test Center

Fort Hood, Texas 76544-5065

I. Introduction

The ultimate test of new Army equipment is the field test by
user troops. Engineering tests can measure certain aspects of
the equipment's performance, however, it is only in the field
that the Army finds out about the true value of the equipment.
But getting meaningful test data from the field is greatly more
difficult than getting data from engineering tests. Engineering
tests can be closely controlled so that there is flexibility in
collecting test data by manual and instrumented means. During
-field tests manual and instrumented data can only be collected if
it does not interfere with the troops using the equipment.
Further the troops must be using the equipment in a certified
operational manner. This constraint inhibits collecting all
desired data. This constraint becomes a big time problem when
test data is required from force-on-force engagements such as was
encountered in the Combat Vehicle - Combat Performance
Operational Assessment (CV-CPOA) which the Combat Arms Test
Directorate (CATD) was tasked to perform in the spring of 1987.

Although the mission was simple:

"Gather empirical data on the survivability of the Bradley
Fighting Vehicle (BFV) during simulated combined arms force-on-
force combat operation against a realistically configured
threat".

The execution was difficult.

This paper discusses this operational test and how the vital
test data was collected and reduced to a large computer data base
which contained many data elements. The computer data base is
called the "BIG MAC".

The Combat Arms Test Director who personally directed this
test had the foresight to assign an experienced test officer to
gather video and film data of all the events occurring during the
execution of the test so that a composite video film could
summarize these events. A seventeen minute video resulted from
this effort and is available for official use. The video gives
an exrellent overview of the test.
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II. Background

The test was specifically designed to collect data on the
survivability of the currently configured BFV and three proposed
modifications.

The CV-CPOA test design methodology was driven by the
evaluation concept in the Operational Test and Evaluation Agency
(OTEA) Independent Evaluation Plan. The Congressional defense
authorization bill mandating the BFV assessment specified live-
fire and operational comparison testing of the Army version of an
enhanced survivability BFV (MZAI and M3A1 HS) and the Department
of Defense version of an enhanced BFV (the ASTB). The Army's
assessment of Congressional intent and implied taskings revealed
the need for a data base that contained those elements of
survivability data that would facilitate a comparison of proposed
enhancements with a baseline using the basic BFV. An analysis of
all factors that contribute to or degrade the survivability of a
combat vehicle resulted in the following key data elements being
identified by CATD and OTEA for inclusion in a data base:

a. Distribution of direct fire aiming points and engagement
angles.

b. Exposure of target.

c. Motion of firer and target.

d. Frequency of indirect fire engagements.

e. Ammunition and personnel on board at time of engagement.

f. Suppressive effects of firing port weapons.

g. Target acquisition and engagement frequencies.

h. Distribution of engagement ranges.

Research conducted by OTEA and CATD revealed a dearth of such
survivabilitiy data on the BFV. A\'ai.lable data included recent
live-fire studies that had been criiticized by the Department of
Defense, the General Accounting Office, and Congress as being
unrealistic and biased. Other diata existed that was based upon
modetinrg analyses that did not have ci"edibiLity with the same
audience. Virtually no empirical operational data existed. Even
though the Congressional bill directed only a comparison test of
the two BFV versions, the absence of empirical survivability data
on the basic BFV led OTEA and CAT[) to design a test which would
provid'- such baseline data. This data had to be the product of
bat..n I ion-sized combined arms forces operating in a realistic,

muimtjinted combat. onvironmen). The combat. operations had to be
re.pr,,srn tal. ivr, of" t.hose described in AirLand Battl.e doctrine, and
1,h( (TFOI? had Lo be structured and trained to represent the
prj,.r'f,,t th r ca (-iron 1987-92 in a ,uropean SCORES V scenario
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setting. Phase I trials were based on this concept. The
principal data output required of phase I was the actual
distribution of all direct fire engagement angles and aiming
points.

In order to respond specifically to Congressional inquiries,
direct comparative testing of the two BFV versions was necessary.
The optimal test design would have had the two enhanced versions
of the BFV used in the same type operations with the same size
forces and weapon types as those in phase I. However, this was
infeasible due to nonavailability of' prototypes and surrogates,
instrumentation limitations, and time constraints, Consequently,
phase II was designed to be a scaled down examination of a Blue
platoon-sized force using the vehicles to conduct offensive
missions in a simulated combat environment. This scaled down
examination included comparison of the basic BFV, the HS vehicle,
and the ASTB vehicle, all with 5U)-horsepower engines, The Chief
of Staff, Army, later directed the inclusion of an ASTB version
equipped with a 600-horsepower engine, Phase 11 trials were
based on this concept. As with phase I, the primary data
elements of interest were engagement arngles and aiming points,

OTEA'u evaluation concept was to examine the comparative
performance data produoed in the phase I1 platoon trials and
soale up to the baseline data of' the phase I battalion-sized
trials. The data from phases I and 1I was used as iriputs into
the US Army Materiel Systems Analysis Activity (AMSAA) arid the
Ballistic Research Laboratory survivability models to lend
further insights into the BFV survivability. The correlation of
the phase II data with the phase I baseline data and the outputF.
of the models and other testing will. allow the Army to predict
the performance of the various types of BFV's with respect to
their survivability enhancements.

Although Congressional. interest. Iucused on the data
pertaining to tht÷ survivability oif the B1V (M2 and M3), OTEA,
anticipating the need for siimlamr diua.a relative to other combat.
vehicles, expanded the scope of the, CV-0POA to include coricurrent
collection of similar data on the ,'11 tank, the improved TOW
vehicl.e (ITV), and the M1i1,

IIt. The making of the "RIG MAC"

The required data was coal.ected by either instrumented
systems or test personnel.

as Instrumented data and c.io leIe.i rn systems. Described
below, in general terms, are the 1.rist.vumented systems used to
simulate tactical engagements and to collect aiid record data.

(1) Video system. The vi.deo system served as the
principal means of data collection. Video tape was thf.' data
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source for aiming point, engagement angle, target exposure,
firer-target motion, target acquisition, and player
identification. Each combat vehicle and hand-held HEAT weapon
was equipped with a coaxially mounted video camera and recorder.
Approximately two-thirds of the Red force vehicles also had a
through-the-sight video camera and recorder installed which
recorded what the gunner saw. At the beginning and end of each
trial, an image of a boresight panel was recorded. Both the
dimensions and the distance to the panel were known, The
internal clock of the video system was synchronized with Inter-
Range Instrumentation Group-Format & (IRIG-B) time, and the
rounds counter was set to zero. At the end of each trial, the
video tapes were removed and annotated with the player
identification number, weapons systems type, and battle trial
number,

(2) Flash box system, The flash box system was used
with the video system to provide an additional source for the
data required to determine the range between the firer and the
target. The flash box system is based on an infrared strobe
which flashes once every 3 seconds, The time of' the infrared
flash is determined from a computer-driven cycle and
electronically relayed from the central computer to an infrared
strobe located on each combat vehicle. The flash of the target's
infrared strobe, which is invisible to the eye, was recorded by
video systems on the firing vehioles. The timing of the strobe
flash is a 3-second cycle and is unique for each vehicle. This
provides a means of oorrelating the time of the strobe flash with
a player identification.

(3) Multiple Integrated Laser Engagement System (MILES)

(a) The need existed for an Real Time Casualty
Assessment (RTCA) system to serve as a tactical sconario driver
by simulating direct fire weapons engagements and their effects.
Emphasis was pJaced on causing cew'es and gunners to execute
proper gunnery procedures under the most realistic conditions
possible. Only two RTCA systems were available--the TCATA
Automated Field Instrumentation Syst.em (TAFIS) arid MILES. MILES
was selected as the principal component of the RTCA system
because it met the fooilowing critical test design considerations:

1. MILES integrates the RT(A p l•ay of vehicular weapons
systems and Individual soldiers.

k. MILFS allows the play oi: tuliy mobile, hand-held HEAT
weapons.

:3. MILES requlres gunners to aim at the center of mass
of a target in order to achieve a hit--a characteristic
prerequisite to collection of meaningful data on aiming point
distribution.
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4. MILES is the standard Army-wide training simulation
system which is readily accepted by US soldiers and can be
employed with minimal artificiality and no specific training.

(b) The inherent limitations of MILES, such as fixed
time of flight for missiles and friendly-only lethality codes,
were considered tolerable since the test design did not require
the collection of force exchange ratios or casualty counts an
data outputs and RTCA system was used only as an exercise driver.

(4) I-MILES, To offset some of the inherent
shortcomings of MILES and to provide redundant data collection
capabilities, an enhancement to MILES was procured specifically
for this test, I-MILES was used as an addition to MILES and was
transparent to the soldier and to the basic MILES. It permitted
programming of vulnerability and lethality logic into the host
MILES, thus enabling the use of speoific Pk's, effective ranges,
and basic loads for all US and threat weapons systems.
Vulnerability was varied by tactioal mission exposure., For'
example, Pk for the BFV fully exposed in the offense differed
from the Pk for the BFV in hull defiladeA in the defense, I-MILES
stored all, engagement data and provided a time-correlated history
of all MILES events, It also provided a method of obtaining the
Intermediate data necessary to determine the range between the
firer and the target,

(5) MILES Laser Detertor Decoder System (MLDDS). The
MLDDS was used to collect data on the frequency of engagement by
all weapons against the BFV in specific quadrants (front, right,
left, rear). In addition to the MILES sensor belts installed on
all combat vehicles, sepal.ate MIjDDS sensor belts were installed
on the BFV's of one Blue force company in phase I and on the
IFV's and HS variants used in phase I1. When a MILES laser
struck a sensor, the laser message and the firing weapon were
recorded and a sequential history oft engagements was est ablished.
MLDDS recorded small arms engagements. This data was necessary
for assessing the effectiveness of reauti.ve tiles,

(6) Position Reporting and R*'cording System (PRRS), The
PRRS was used to collect the position location o1' each combat
vehicle at the ti'ime of engagemernt. Eacrh combat. vehiele. was
equipped with a mobile unit which tranrsmitted a signal at a
prescribed time within each second. The signal %.,m. reelved by a
tower array and. relayed to PRRS cent.al. where computers
calculated the combat vehicle .ocvatiori •n grid "ootdlrdates. Th'-'
grid location and time were recorded ani magnetic tape. lReecordl.ng
of position location was necessary am nn Intermediate step in
determining the range betw.een vnircr' and target for r a(ch d i'eet
fire engagement.

(7) Scanning laser system. During phase 11, the
scanning lager system was used to determine when line of sight
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existed between the defending Red force vehicles and attacking
Blue force BFV's, In each medium and long range trial, a
scanning laser was installed adjacent to each Red force vehicle.
(For safety reasons, scanning lasers were not used in short range
trials.) The laser transmitter was mounted on a'tripod in such a
manner that the transmitter was at the eye level of the track
commander when the combat vehicle wus in defilade. Line of sight
was established when the transmitter laser beam struck the laser
detector array system installed on the Blue force vehicle, The
lasur signal identification, player identification of the Blue
'orce vehicle, and the time were transmitted by the Blue force

vehicle to a data collection system where they were stored on a
-magr,,t 1 0 tape.

b. Manually collected data.

(1) Prior to each trial a playe-r roster was completed
for all participants. This form nontained the trial
ideitification, unique player identification, and the
instrumentation on each player.

(2) The time each trial started and ended and the reason
for the ending were recorded. The type of terrain and the
weather conditions for each trial and the times that obscurant
were used were also recorded.

(3) At the beginning and end of each trial, a controller
recorded odometer and engine hour read.ings for each combat
vehicle assigned to the trial.. The controller also recorded the
number of troops on each IFV, CFV, 14S variant, and ASTB surrogate
at the start of the trial, During trial. exeoution, the
controller noted the times when troops mounted and dismounted.
Controllers also reported any administrative situations which
might have invalidated a trial,

(4) Indirect fire was played only during phase I trials.
Manually collected data on indireut ,liro engagements included the
time of artillery fire: the type of fuse, ammunition, and
weapon; the size and number of volLeys; which artillery unit
shoul.d fire; size and location of impact. area; and the
identifioation number oi.' the vehcles in the impact area,

( ) Each player compLr.-tud a demographic questionnaire,

(6) At the end of each trial, ,•ach combat vehicle turret
crewman and BFV squad member completed questionnaires on the
perceived effectiveness of their weapons to include use of the
firing port weapons against. d ismunited il.cops*. The Red force
dismounted troops alor completed a questO. oniaire on the perceived
et'fectiveneso of Blue force suppressive fire.

(7) At the end of each trial, the subject matter experts
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evaluated specific aspects of the trial--maneuver, fire support,
intelligence, engineer, communications, logistics, leadership,
training, and use of the combat vehicle. They prepared a
narrative summary of the tactics and performance of each force
for each trial. All record trials were certified by the senior
controller (senior, subject matter expert.) as being doctrinally
sound.

(8) During phase II, three Blue force platoons rotated
among the HS variants and the ASTB surrogates. Each crew
conducted six consecutive trials in each vehicle. At the
conclusion of the sixth trail, each crew member completed a
questionnaire on the differences in combat performance of these
vehicles. The Red force players also completed a questionnaire
on the performance of the surrogates,

Data collected by instrumentation was compiled by the test
support contractor and test team and forwarded to the data
reduction center. Data collected manually was edited at the test
site and then forwarded to the data reduction center.

a. The video tape and I-MILES record for a specifio trial
were issued to a data reducer. When through-the-sight and
coaxial video tapes existed for a single vehicle, both tapes were
issued to two data reducers for simultaneous processing. The
video data reducer reviewed the video tape to determine when the
firing system engaged a target. This time of engagement is
referred to as a trigger-pull. A burst of 10 rounds from a 25-
or 30-millimeter cannon constituted a single engagement, The
time of the trigger.-pull was indicated by the rounds counter
incrementing and by the IRIG-B time on the I-MILES record.

b. The data reducer used a specially fabricated, three-
dimensional scale model to determine engagement angles and aiming
points for the MI, M2, and M113 type vehicles. The scale model
of" each combat vehicle is mounted on a pivot so that the model
can be rotated through :3600 in a hori;ontal. plane. The reducer
oriented the model so that it matched the picture shown on the
video screen at the time of the trigger-pull. The horizorntal
engagement angle between the firer and the target was read from
the scale and entered on the data redic-l. 1on form. 1)1 screte

angles were recorded for the hull arid the turret orientation, A
pivoting bar attached to the base of the device and oriented to IA
vertical scale was used to determine the vertical engtogement
angle. Front, rear, side, and top view pictures of' eaoh , onibat
vehicle with 4-inch grid squares sup, imposed over the pictures
were used to specify the location of' the aiming point. From
these views the one that matched the video picture was select.ed
and the grid coordinates were recorded.

c, The data reducer determined the target vehicle
identification by noting the flash box .ounter number at, the
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moment the target vehileo's strobe light flashed and correlating
that number to the vehi-le Identit'ication number. When the
pairing report from the I-MILES was available, it was used to
validate target identification or establish it when the flash box
did not work.

d. Range between the firing and target vehicles at the time
of the trigger-pull was estimated by the data reducers using a
stadia overlay, The video data reducer positioned the stadia
overlay on the video tape and counted the number of stadia lines
for the size of the boresight panel. This established a
benchmark. At. the time of the trigger-pull, the data reducer
placed the stadia source over the video picture of the target and
counted the number of stadia lines for the target size. A
conversion table was used to determine the range based on the
number of stadia lines. This stadia range was entered on the
data reduction form.

e, Range data was calculated by a computer program which
used the PRRS-developed position locations of the firer and the
target at the time of the trigger-pull., This method required
positive firer and target identifications that were provided by
the video tape and/or the I-MILES printouts.

f. If the PRRS and stadia ranges differed by more than 700
meters, a quality review group examined both ranges to assess
their accuracy. When the PRRS data was questionable for either
the firing or target vehicle, like data on other vehicles of the
same platoon was evaluated to verify the range, If the PRRS
range could not be verified, the stadia range was used. In those
cases where neither the stadia nor the PRRS range could be
determined, senior data management assistants viewed the video
and estimated the ranges at time of the trigger-pull.

g. Intervisibility data was derived from a computer program
that correlated the positions of the players at the time a Blue
force vehicle received scanning laser energy. A computer program
calculated the duration of the target vehicle exposure and the
distance the target vehicle traveled while exposed. The computer
program provided an output data set used in the production of the
phase It data base,

h. Data collection forms and quest lonnsires were edited by
quality assurance personne.l and entered into a computer diata
file, The data file was structured by player identification,
trial number, and time of data event.

TV. "1310 MAC" structure

The data base is composed of two distinct files. The primary
file (battle history) is an integrated, chronological record of
all the activities occurring during the execution of a trial.
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This is calied the "BIG MAC", The other file (descriptive data)
is an integrated record of the conditions surrounding the
execution of the 'trial and the subjective data collected during
the trial.

a. "BIG MAC" fil.e. The primary data file was constructed
during an iterative process of data reduction, edit, and quality
review.

(1) The initial format was the file of reduced data from
the I-MILES and from the video and flash box systems. It
reflected the direct fire battLe.

(2) When the initiall file reached data maturity, a
computer program correlated the position location of' each firer-
target pair. This data resulted in range being added to the
file.

(3) Concurrent with the range process, a computer
program examined each engagement and calculated ammunition usage
for each firer. The same program also determined if squad
members were on board when the target was, a BFV.

(4) When the above steps were completed, the data was
merged with the artillery data and a time-correlated file was
output that contained data on all direct and indirect fires.

(5) The integrated firing history was then m'c." with
the data file containing the trial startt and finish dati' on each
vehicle. This process continued with a merge prograam that
incorporated the exposure data calcul.ated by the Laser' system.

(6) The end result was a battle history file for all
trials.

b. Descriptive data file. Thisi fil( i contains tnrpe
information on the conditions of each trial and the subjective
data collected, It is orginized as subord.inate records, each of
which is sorted by trial and time.

The mission of the test, team tas Io produc' a (I.d:a asse On
operational survivability In a timely and accurate manneýr. The
independent evaluator, OTEA , is refopor S for .hato rs.c-
analysis and determining the specifiri answers to questirmrls
regarding BFV survivp'bility. A copy of I. he data base %,'as
forwarded to OTEA in magnetic tape form•at:. The data hase was
derived from approximately 6,000 hours of video tape anid 1,000
collection forms. The data base containrs approximately 2(6,000
direct fire engagements, 1,200 indirect F'ire:e engiagemeiit.s, 3,00(0.
intervisibility segments, and 19,000 deseriptive events. The
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totaL data base contains approximately 2 million data elements.
The data presented clearly demornstrates the capability of the
data base to support analysis of the BFV survivability question.

V. The use of the "BIG MAC"

The basic purpose of the CV-CPOA operational test was to
provide reslistic force-on-force test data to OTEA, They would
use the data in their evaluations to predict the operationally
survivability of the BFV and other Aimy combat vehicles. OTEA
provided "BIG MAC" data to the Ballistic Research Laboratory for
the use in their models to calculate survivability results. OTEA
completed its evaluation and reported its finding to Congress.
The findings led to some design changes to the BFV. The "BIG
MAC" had served. its purpose but the "BIG MAC" is more than a data
base with a one time use. The data base is a rioh source of
force-on-force test data, One can play some mind. boggling games
with the number of ways the data can be sliced and diced. Due to
the large number of' different data el.ements, reports can be
prepared with any number of data sets. For example, the
following type of reports can be prepared:

a4 Direo tfire weap-on - Frequency of' engagements and
engagement angles

b. Direct fire weapons - Aiming pointt distributions

c. Direct f'ire. wellons - Engagement range distributions

d, Ammunit1-2rn and. Dersonnel. on board BFV at time of
engagement

e. Target exDosure and mo.ti.u of firer and target

tf. Indirect fire wappgns

g. Combet vehic'le inter1 'iihill!a4!(ieagements

h, Direct fire weapons, distribution

In February 1988, the DepnriImenit (-I' DfDerense Oft't'ice of Test
and Evaluation (DOTE) asked that. an et,-orided evaLuation of the
CV-CPOA data be made regarding a host of questions asked by DOTE.
The questions concern such things as, eft'ect of direct and
indirect fire on both the red and hlue target vehicles, effects
of' line of sight on ranges cf engagementrs, how was the i'rv
engaged on the batti.ef'.eId, order ei'oe:l s on engagement rianges as
the trial progressed, etc. The ro)0u1t y under Seoretary of' the
Army 1Operations Research) tasked (ol',"A to respond t.o these
questions and t.o mnke [he "PIG MAC" available to others. OTEA
responded by t'ormlng a Study Advisory GV(Aip of' Army organizations
which would have an interest in the data. OTEA alrso obtained
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coitraotor support to prepare & data dictionary, data base
documentation for the "BIG MAC" a•d also prov'icJ: assistance in
responding to the-DOTE questions.

Several DAG members have used data trrom the ý'EBIG MAC" to
assist them in their work. AMSAA compared "BIG MAC" hit
distribution data with the current-1y used cardioid distribution
data for tanks and the BFV. The comparison showed that the "BIG
MAC" data contained more "Head-on" shots. As a result, the Army
has decided to use the "BIG MAC" hit distribution data for future
AMSAA modeling work for tanks and BFV. The Infantry School has

,used the "BIG MAC" data in some of their studies on TOW missile
firings,

Upon completion of the contractor's work on the data
dictionary and data base documentation, the "BIG MAC" will, be
available to all Army organizations tor oft'icial use and can
provide realistic force-on-force data to assist them in their
work.

163



MODEL SENSITIVITY IN STRESS-STRENGTH RELIABILITY COMPUTATIONS
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Watertown, Massachusetts 02172-0001

ABSTRACT

There has been a recent interest in determining high statistical reliability

in risk assessment of aircraft components. This paper identifies the potential

consequences of incorrectly assuming a particular statistical distribution for

stress or strength data used in obtaining the high reliability vaTues. The

reliability is defined as the probability of the strength being greater than the

stress over the range of stress values. This method is often referred to as the

stress-strength model.

A sensitivity analysis was performed involving a comparison of reliability

results in order to evaluate the effects of assuming specific statistical dis-

tributions. Both known population distributions and those that differed

slightly from the known were considered. Results show substantial differences

in reliability estimates even for almost non-detectable differences in the

assumed distributions. These differences represent a potential problem in using

the stress-strength model for high reliability computations, since in practice

it is impossible to ever know the exact (population) distribution.

An alternative reliability computation procedure is examined involving

determination of a lower bound on the reliability values using extreme value

distributions. This procedure reduces the possibility of obtaining non-

conservative reliability estimates. Results indicated the method can provide

conservative bounds when computing high reliability.
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INTRODUCTION

There has been an interest in quantitative reliability-based structural design for many
years. An early example is the structural reliability development by Freudenthal. 1 Stress-
strength reliability computations are a principal consideration in structural reliability design.
Reliability methods have been considered for many structural applications including: civil engi-
neering,2 nuclear reactors,3 fixed wing aircraft, 4 rotorcraft, 5 and space vehicle propulsion sys-
tems.6" Very high structural reliability is expected to be achieved for most applications. A
reliability goal of 0.9(9) per flight hour was suggested in 1955 by Lundberg4 for fixed wing
civil aircraft. Recently, Lincoln,7,8 using reasoning similar to that of Lundberg, cited a reliabil-
ity goal of 0.9(7) per flight for fixed wing military aircraft. The U.S. Army has instituted a
new structural fatigue integrity criterion for rotorcraft which has been interpreted5 as a
requirement for a lifetime reliability of 0.9(6).

The use of advanced materials whose structural properties are best characterized on a sta-
tistical basis appears to be a stimulant for increased interest in statistical-based structural
design for airborne structures.

A significant feature associated with predictions of structural reliability is that the conse-
quence of a failure event may be more than reduced system performance or the inconve-
nience of a system being out of service; structural failure can be catastrophic in terms of loss
of life and property. In this context it is imperative to evaluate the sensitivity of structural
reliability predictions to uncertainties. It appears that this issue has received little attention
except for a brief note by Harris and Soms 9 and a recent presentation by Berens. 10

There are many issues to be faced in obtaining quantitative structural reliability predic-
tions. Such issues include system complexity (many components, multiple failure modes in
each component, and interdependence of component behavior), sample or data set size
associated with structural loading spectrum conditions and with mechanical properties, and the
basis for characterizing structural qualification tests (the number of duplicate specimens and
methods for compensation for untested effects such as the effect of environment).

In addition, when predictions of structural behavior are required in the high reliability
range, since sufficiently large data sets are usually not available, it is necessary to use parame-
tric modeling methods. Assumed parametric functions permit extrapolation from available data
to determine the probability of failure. Since the probability of failure is extremely small,
this will always involve substantial extrapolation from what can be observed experimentally.
The estimated reliability will therefore depend strongly on the assumed parametric probability
density function (PDF). Slight deviation from the assumed model in tail regions can have
dramatic effect on high reliability estimates.
1. FREUDENTHAL, A. MI. The Safety of Structures. Trans. ASCE, v. 112, 1947.
2. CORNELL, C. A A Probabiliry-Based Sructural Code. 1. Am. Cone. Inst., v. 66, 1969, p. 974-985.
3. US. Nuclear Regulatory Commission. Reactor Safety Snsd. An Assesnt of Accident Risks in U.S. Nuclear Power Plants. NRC Report

WASH-.1400, 1975.
4. LUNDBERG. B. Falgue Life of Airplane Sucurmres. 3. of the Aeronautical Sciences, v. 22, no. 6, June 1955, p. 349.
5. ARDEN, R. W., and IMMEN, F. H. U.S. Army Requirenentsfor Fa.,oee Intgriiv. Proceedings of American Heicopter Society National

Technical Specialists Meeting on Advanced Rotorcraft Structures, Wui amsburg,'VA, October 1988.
6 SIT!AO. M. C.. and CHIAMIS. C. C. Probabi/iv of Failure amd Risk Amriment of Propulsion Structural Compovnents. NASA Technical

Memorandum I023, 1989.
7. LINCOLN. 1. W. Risk Assmment for an Aging Mllitary Aircraft J. or Aircrafl, v. 22, no. 8, August 1985, p. 687.
8 CORNOG D 0 and LINCOLN, 3. W. Risk Assesment of the F.16 14ng. Proceedings of the 1988 Structural Integrity Conference, San

Anionio. TX, WRC.TR.89.80W7I, Wright-Patterson AFB, Ohio, 1989.
9. HlARRIS, B.. and SOMS, A. P. A Note on the Difwulry Inherent in Eitinidng Refiabilty from Stri-.Siength Relationships• MRC-2123,

Mathematics Research Center. U. of Wiscolisin, AD.A073637, October 1980.
WO BERENS A. Structural Risk Analysit In AnfitAirraf Fleets. Proceedings of the 1988 Structural Integrity Conference, San Antonio. TX,

WRrDC-TR.89-8Ti. Wright.Paitcron AFT, hio, 1989.
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In fact, one might argue, as does Freudenthal,t that because of the extrapolation
involved, statistically-based high reliability calculations for complex systems must always be
suspect:

"When dealing with probabilities a clear distinction should be made between conditions
arising In design of inexpensive mass products in which the probability figures are derived by
statistical interpretation of actual observations or measurements (since a sufficiently large num-
ber of observations are actually obtainable), and conditions arising in design of structures or
complex systems. In the latter, probability figures are used simply as a scale or measure of
reliability that permits the comparison of alternative designs. The figures can never be
checked by observations or measurement since they are obtained by extrapolations so far
beyond any possible range of observation that such extrapolation can no longer be based on
statistical arguments but could only be justified by relevant physical reasoning. Under these
conditions the absolute probability figures have no real significance .... "

Nonparametric stress-strength procedures do not require specific parametric assumptions,
and so it might be hoped that such procedures could circumvent this difficulty. However,
Johnson 12 has noted that "The nonparametric approach has one serious drawback. In return
for its distribution free property, it is not possible to establish high rel~ibillty even with mode-
rate sample sizes." With respect to the use of parametric models, Box has observed "all
models are wrong, but some are useful," meaning that no parametric statistical model should
be accepted uncritically. Whenever a model Is used, It is the obligation of the analyst to
investigate the consequences of departures from an assumed model which, though small, are
consistent with available data. Harris and Soms9 has Illustrated a "serious problem in the use
of stress-strength relationships in estimating reliability." In particular, "stress-strength models
in reliability theory are highly sensitive to small perturbations in extreme tails." The perturba-
tions considered may arise from an alternative mode of failure such as the presence of a flaw
in a structure. Further, they note that the problem cannot be eliminated unless "astronomi.
cally large sample sizes are employed."

In the following, the examination of the sensitivity of structural reliability estimates
focuses attention on one of the previously cited issues: the selection of a parametric PDF.
The examination of the sensitivity of stress-strength reliability estimates Is extended to addi-
tion perturbation effects. The sensitivity of reliability estimates to the selection of parametric
models is considered with emphasis on graphical representations. The results are evaluated
with regard to the usefulness of parametric stress-strength models for application to the high
reliability regime of 0.9(6) to 0.9(7) when the consequence of failure may be catastrophic. An
alternative reliability computation procedure Is examined Involving determination of a lower
bound on reliability which can be obtained independently of the assumed PDFs.

S1TRESS-STRENGTH MODEL

The statistical reliability as referred to in this report is determined in the following man-
ner. Shown In Figure I is the stress-strength model where f2(s) and fi(S) represent the
PDFs for the applied stress s and material strength S.

I l •UANM u•M, $ RellabWli of Mecanick S)ywtmsn Especially A $rafl SeiJtur WADD Technical Report

12, JOHNSON, R. A. Sarm-.Swnmth Models fo Reab•Utky, Handbook for Statiutics, Elevier Science Publishers, New York, v. 7,1988, p. 27,
13 BOX, 0/ E P. R obu..veames I e S tak.J of $dewdjic Mode Bu•d'i. Robustness In Statistics, R. L. Launer, and 0. N, Wilkinson, eds,,

Academic Prers, Inc.,,INlew York, 197,g,
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Normal stress-strength model

f(s) a f(S) are PDF Repreentaton for Stress and Strength Values Respectively

0

C; soCalculated Stress

S=Matedals Strength

12(s)

Il(S)

3 f I I

20 30 40 50 60 70

Figure 1. Normal-normal stress-strength model.

Since the joint probability dR for the strength being greater than s, can be written as,

oC

Go

are as folows

The~ ~ ~~ ~~~Fgr I.F mosrmoftnnoredi stress-strength models.stenra itiui~ seFgr )

dR = f2 (si) ds f 0 f1 (S)dS (1)

then the reliability for all s values is

PROBABILITY DENSITY FUNCTIONS

A wide variety of PDFs may be applied in obtaining R values. Some examples of PDFs

are as follows:

The PDF most often used in stress-strength models is the nor~mal distrib~utio0. (see Figure 1).

fN(S)Nexpc=-I, (3)
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where - a < S < o,, u > 0, and a > 0. The mean of the population is p, and the stan-
dard deviation a for this model.

A model which is more easily justified on physical grounds is the Weibull PDF,

ex()p _ i_1 t (4)

where S > 0, a > 0, and p > 0. Despite the relevance of the Weibull distribution1 4 to the
strength of brittle materials, it is not often used, possibly because it is more difficult com.
putationally to obtain reliability values than with the normal model.

If S follows the Welbull PDF, then In(S) will have an egtreme value distribution with PDF

fmin (S) M I C~xP [-p "S -CX !i.l) 5

The distribution of • In(s) is
1 (,-u2,\b' ( (s-u,,, ..

fmax (s) -I exp (1 ~-~ U2 exp I- U2 (6)

Both of the* above formulas are referred to as extreme value distributions. The use of
extreme value distributions In a stress-strength model is illustrated in Figure 2. The extreme
value distribution parameters are related to the Weibull parameters as follows:

1b-n and u,-loga

In order to obtain the population Weibull shape and scale parameters fP and a from the
known population mean # and standard deviation a, the following approximations are
suggested:

Sin 1,2 7 /o- 0.56  (7)

and

ao+1)

The functions defined In Equations 3, 4, 5, and 6 clearly have different shapes and they
exhibit dramatically different tail behavior. Since reliability estimates depend strongly on the
extreme upper tail of the stress PDF and the extreme lower tail of the strength PDF, the
choice of model will typically have a substantial effect on the reliability estimate. For exam-
plo, R is usually higher when calculated from the normal distribution than when the extreme
value model is assumed.

Applying PDFs that are capable of obtaining accurate high reliability estimates (e.g., 0.9(6))
requires prior kngwdcgt of the functional form of the population PDF in addition to the

14, BURY, K. V. Sal•"cal ModlS hi Applied Sdme,e. John Wiley and Sons, Inc. (New York, London, Sydney, Toronto), 1975,
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availability of large data sets (e.g., 1,000 replicate specimens). For lower reliability values
(e.g., 0.9), a goodness-of-fit test for PDF Identification with a moderate amount of data is gen-
erally adequate. The consequence of incorrect PDF selection and limited sample sizes are dis-
cussed later in this report.

Stress-trength: extreme value

V" - stress Strength
t Mean=51

Mean-24 S.D.=5.1
S.D.,2.4

CY -

3.0 3.5 4.0

Figure 2. Stress-strength extreme value functions.

METHODS FOR COMPUTING RELIABIUTY R

In determining R from Equation 2 it should be noted that the integration process does
not determine an area. The area A described by the intersecting functions in Figure 3 does
not represent a 1 - R failure probability. The area A is the probability (P) that either S < T
or s > T, that is,

A = P(S < T) + P(s > T), (8)

where T is the point of intersection of the two functions. The area A is obviously not the
same as the 1 - R from Equation 2 which determines P(S > s) jointly with P(s).

171



Stress-strength reliability model: normal-normal

SIntersecting Area Does Not Equal I -R

o Stress

Strength

6(°

'o IIII.

10 20 30 40 50

Stress or Strength
5-25-90

Figure 3. Stress-strength Incorrect unreliability region.

Numerical Integration

Numerical integration procedures are usually suggested if a closed form solution of
Equation 2 is not available. The numerical integration process involves repeated application
of a method such as Simpson's Rule. The inner integral in Equation 2 is evaluated numeri-
cally for each ordered si value i = 1, ..., n resulting in an II(i) array of values. Each of
I1(i) is then multiplied by the corresponding f2(si) forming another array 12(i) = f2(si)II(i). R
is obtained from 12 array by reapplying the numerical integration method. This process will
usually provide accurate results for 51 < n _s 101, where n is the number of mesh points in
the integration process. Simulation results showed that the limits of integration can be
obtained from ± six standard deviations from the mean.

Closed form solutions are available when the assumed stress and strength PDFs are both
normal or both Weibull.

R Computation from Closed Form Solution

If both stress and strength data can be represented by normal PDFs N(,us, COs2) and N(us,
as ), respectively, then,
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R-P(S>s) -0 ( 14s - (9)7i + as,(9

where (0) is the standard N(O, 1) normal cumulative distribution function, ja& and us are
means, and 0a" and t's2 are variances of the stress and strength, respectively.

If both f, and f2 in Equation 2 are Welbull with different scale parameters al and a2,
but with a common shape paramelter P, then the integration indicated in Equation 2 gives the
following closed form expression

R (10)

Fa2)

The common shape parameter means that both the stress and strength are skewed in the
same way, which Is a serious limitation. It Is much more reasonable to have a stress distribu-
tion with a heavy a= tail and a strength distribution with a heavy lam tail, but this is
not possible unless the shape parameters can be varied separately.

Nonparametril Method

This method does not assume a PDF for either stress or strength data, It determines reli-
ability from the ordered array of m stress (s) and n strength (S) values, where each of the S
values are compared with all s values. R is the proportion of times S > s for the total num-
ber of comparisons, that is

= ; aj, where a1  0,, 1

This method Is not useful for obtaining high reliability even for relatively large data sets.
It is obvious from Equation 11 that for high reliability calculations, mn must be very large;
for example, 106 would be required in order to obtain R of 0.9(6).

The Weibull, normal, or other parametric PDFs can provide estimates of high R values
because of their ability to extrapolate beyond the available empirical data, Unfortunately, the
amount of extrapolation dependency determines the magnitude of relative error in R.

CONTAMINATED PROBABILITY DENSITY FUNCTIONS

In order to illustrate the sensitivity of high reliability calculations to small deviations from
assumed models, we will take the following approach. Consider the situation where with a
high probability of I - t, specimens are obtained from a primary PDF, wbile wfth probability e,
spec!mcns come from a secondary PDF. This probability model is referred to as a entiniatle
model. The secondary component is called the cgna ijJin, and the probability £ is the
Aa=t. of contamination.

An example may help clariry this Idea. Consider the situation where 97% of the time a
specimen Is obtained from a population of "good" specimens while the remaining 3% of the
time consistently lower strength measurements are obtained, either due to manufacturing
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defects or to faulty testing. The primary PDF would correspond to the "good" specimens, the
contamination would represent the distribution of flawed spcimens, and the amount of con-
tamination is c - 0.03.

The following procedure is introduced in order to examine the effects of computing high
reliability values when uncertainties exist in selecting the functions for the stress-strength
model. Initially, high reliability values are obtained from the normal stress-strength model
(see Equation 9) using known PDFs with different mean values but equal coefficients of varia-
tion. The difference in mean values were determined from the required level of high reliabil-
ity. Another R value is then obtained by applying this known distribution with a small
amount of contamination (c) in order to show an almost undetectable difference graphically
between the true and contaminated PDMs. The effects of this difference in the reliability
computation is discussed in the following sections in order to examine the sensitivity of the
stress-strength model to the assumed PDFs. This procedure provides an effective way of
demonstrating the effects of assuming a specific PDF in determining high reliability.

The normal PDF with variance contamination for the strength data is,

Ns, (us, av 2) - (1 -8) N (us, s 2 ) + eN (us, KI OS2) , (12)

where jus and as2 are the mean and variance for the uncontaminated normal strength distribu.
tion, K1 is a scaling factor, and 100 v is the percent contamination.

The strength distribution with location contamination Is

NSL (UL, OS 2) a (I - e)N (us, s2) +e N(us :t:K2 us, as*2) , (13)

where K2 is a scaling factor for the jiean gus, and the sign determines which tall of the distri.
bution Is to be contaminated and s*" is the variance on us :t K2os, The location contami-
nated PDF (see Equation 13) can provide reliability estimates to represent the potential 6f a
secondary failure mode. Contamination of the stress distribution would be similar to that in
Equations 12 and 13. It was not necessary to Include contaminated distributions for both
stress and strength in order to show substantial reduction in the high reliability estimates.
The strength PDF contamination was sufficient.

A linear relationship to obtain R for the reliability models when a combination of both

contaminated and uncontaminated stress and strength normal PDFs can be written as,

R - (1-SO) (1 -2) Roo + 1( (I- 82) Rio + 82 (1- E) Rol + El ,2 R11  (14)

where 100 el and 100 E2 are percent contamination for the stress and strength distribution,
and the Rij values are obtained for the case of variance contamination only; that is,

R ( w 1S -,Us (15R~~S- + (as,

and for location contamination, RKL would be
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RKL r-# #SK (16)

Equation 14 can be extended to include all combinations of variance and location contamina-
tion simultaneously, but it was not necessary for this sensitivity analysis. In Equation 16, if i,
j w 0, then there is no contamination; for i, j w 1, then both stress and strength are contami-
nated. For example, If there is contamination of variance of strength only, then

R = (1 -82) R oo + E2 R 01  (17)

where

Roo =0 + TI,V ON02 + Clio2)

and

ne as,2 + So ,2)

LOWER RELIABIUTY BOUND

A conservative lower bound on the reliability is introduced in order to protect against

incorrectly Identifying statistical Junctions in determining high R. The bound is obtained from

a method proposed by Bolotin,1 and modified to employ the extreme value PDFs (see Equa.

tions 5 and 6). The method provides more conservative bounds than would be obtained from

standard methods which are dependent on the assumed PDFs. The selection of the extreme

value functions provides additional conservatism because of their heavier tails. The method is

simple to use and Is not restricted to any specified PDF. The reliability bounds are (see

Figure 4),

1 - W1W2> R > (1-Wj)( -W 2), (18)

where (I - W-)(1 - W2.) represetsi the probability N -. st and S > SI, which can be a some-
what conservative estimate..

The. lower bound is then,

RL. (1 - W)(1 - W2), (19)

where

W2 = f2 (s)ds and Wt - ft (S)dS

for any choice of sl = S I

15, BOLOTIN, V. V. SMldCd MeaWho& in Snrcjural Mechanics, Holden-Day, Inc., San Franduco, CA, J. J. Breadstaffer, ed., 1969.
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Stress-strength extreme value model: Bolotin R-bound

"CO)

1f(max) f(mln)

S S
WI W2

S's

II I I

3.0 3.5 4.0 4.5

Figure 4. Bolotin reliability bounds using extreme value functions.

GOODNESS-OF-FIT TEST

The capability of determining desired PDFs from empirical data was investigated. The
choice of PDF will be shown in the following sections to have a substantial effect on high
reliabilit computations, so it is important to examine model selection procedures. A statisti-
cal test, of goodness-of-fit was introduced in addition to graphical displays in order to select
the desired PDFs. Empirical data used in the investigation was obtained by randomly select-
ing a relatively large number of values from a known normal PDF. A comparison of known
contaminated PDFs and the uncontaminated PDF is made with respect to the empirical values.

RESULTS AND DISCUSSIONS

Variance Contamination

Shown in Figure 5a are reliability computation results and graphical display of a normal/normal
stress-strength reliability model, where a 1% (E = 0.01) variance contamination was introduced
and scaled by K1 = 4. The graphical display was obtained from application of Equations 12

16. ANDERSON, T. W., and DARLING, D. A A Test of Goodness.of.fiL J. Am. Statis. Assoc., v. 49, 1954, p. 765-769.
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and 13, where N(us, as2) is defined in Equation 3. The graph shows an almost undetectable
difference between the contaminated and uncontamitiated PDFs. This indicates that the
choice of E and K are reasonable with respect to the potential differences between assumed
and actual PDFs. However, the reliability values differ substantially (0.9(6) versus 0.998989).
This implies that either one failure in a million or 1011 failures in a million is predicted
depending on the selection of PDFs which can differ in probability values by less than 0.0005
in the extreme tail regions (see Figure 5b). Using "good" representative PDFs in the stress-
strength model in predicting only a single failure will occur in one million operations (e.g.,
number of flight hours) for R = 0,9(6) can result in a severe anticonservative estimate since
for almost identical PDFs, 1011 failures per million could also be predicted.

The accuracy of the high R estimates depends on the level of precision in defining the
extreme tail of PDFs. This requires selecting a PDF from a data set that accurately repre-
sents the known population function in the extreme tail regions with a probability difference
of much less than 0.0005. Unfortunately, this would require an unrealistically large data set.
In current practice, if a very large data set is not available, then PDFs are selected from
smaller sets with reliance on the functional representation in regions less than first ordered or
greater than the largest value.

The stress-strength procedure is quite effective for the range of Rh values between 0.5
and 0.95 since usually In the extrapolation process, a small difference in the extreme tail prob-
abilities values will not effect the required accuracy in R. Reliability results from uncontami.
nated and variance contaminated (E - 0.05 and KI - 5) PDFs showed no differences for a
known R w 0.95. Unfortunately, in order to obtain high reliability, extrapolation into the
extreme tail of the PDFs is required, thereby increasing the required level of precision neces.
sary to distinguish between, for example, 0.998 and 0.9(6).

In order to demonstrate the uncertainties in selecting specific PDFs from empirical data
when computing high reliability values, the following displays are shown in Figure 6. In
Figure 6a, a plot is shown of the empirical normal cumulative density function (CDF) and the
corresponding contaminated and uncontaminated normal distribution functions where the mean
is 50 and standard deviation (SD) is 5, with sample size # - 100. Reliability values are also
thulated from the stress-strength model results using all six candidate functions. For exam.
ple, R(3, 5) is the reliability obtained from variance contamination of 3% and a scale of 5
for variance. A statistical goodness-of-fit test 16 that measures the relative differences in the
tail region of the distributions was applied in addition to visual inspection in order to estab.
lish if each function could represent the CDF of the ranked data. Results showed this to be
true; see Figure 6b for the tabulated observed significance level (OSL) which show in all
cases OSL > 0.05, a requirement for the assumed function to be considered from the same
population as the empirical data.

The results show that although each distribution fits the data quite well (see Figure 6b),
there Is a large relative difference in R values: 0.9(6) for R(U.C) and 0.9957 for R(3, 5).
In Figure 7, the results are similar to those in Figure 5. The variance contamination was 1%
with a scale factor of 6 for both as and oa. Again, although the functions are similar, the rela-
tive reliabilities differ substantially (0.9(6) versus 0.9977197). As was the case in Figure 5,
severe consequences could exist if R = 0.9(6) is assumed and the actual reliability was
0.9977197. Since this could result in a number of premature failures, 2280 in one million,
occurring compared to the assumed one failure in a million. The results showed a low level
of sensitivity to the selection of the factor K1.
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Normal stress-strength models

Relabllllty.,9999922 (Unoontaminated Model: Solid Une)

Rell•lity..9989B93 (Contaminated Model: Dotted Une)

Contamination: 1% for Both POF's With Variance Scaled By K(I).4

Stress

Mean,24
S.D.*2.4

6

o. Strength

Mean,5i%n S.D.,,5.1
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Figure 5a. Stress-strength normal functions with and without variance contamination.

Normal stress-strength models with contamination
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Figure 5b. Detailed region of Intersecting functions (see Figure 5a).
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40 50 60

Strenath

Figure 6a. Goodness-of-fit: empirical versus functional normal CDFs.
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Figure 6b. Lower tail of empirical/normaf distributions (see Figure 6a).
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Normal utreass.strength models

Relaiblity..9999992 (Uncontaminated Model: Solid Une)

C Reliability=.9977197 (Contaminated Model: Dotted Une)
Contamination: 1% for Both PDFes Wilh Variance Scaled By K(I ).6

Maim24
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Mean-51
S.D.=5.1
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Stress or Strength

Figure 7. Reliability/normal functions with and without variance contamination.

Location Contamination

In Figure 8, reliability computation results and a graphical display of the stress-strength
models are shown. The contaminated functions were obtained from 1% (e = 0.01) location
contamination as defined in Equation 13 where K2 = 4 and the (-) value is used for strength
and (+) value for stress. The contamination in this case represents a secondary failure mode
not considered when assuming a specified function from the test results. For example, ignor-
ing the possibility that one in every 100 parts may have a lower strength level, say 4 standard
deviations from the mean, can result in the reliabilities tabulated in the figure. That is, for
the assumed correct model, R = 0.9(6), and the actual case where there was a lower strength
level having one chance in 100 of occurring resulted in R = 0.999459. Figure 9 provides
similar results to those in Figure 8 except there is a greater difference in reliability values
0.9(6) versus 0.991012 due to a greater shift (K2 = 6) in the mean value for the contami-
nated PDF. With a 1% contamination this result is predictable since one in a hundred times
a failure should occur because ps - K2o is less than the mean of stress value. The above
figure shows the consequences of not being able to identify the correct function because of
the inability to always detect a flawed component. The result is the determination of an
overly optimistic reliability value when the true reliability could actually be orders of
magnitude less.
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Normal stress-stronglh models

Relaillty,.9110fb2 (Uncontaminated Model: Sold Una)

Relablty..9094590 (Conalamlnaled Model: Dottad Una)

S" u Conlamination: I% for Both PDPs With Location Scaled By K(2).4

Mean.24S.D,.",

Strength
Meanw51
S.0.5.1

9
a

I I I I 1II

10 20 30 40 50 60 70

Stress or Strength

Figure 8. Reliablity/normal functions with and without location contamination.

Normal stress-strength models

Reliablity..9999992 (Uncontaminated Model: Solid Una)

Reiabilhy-.9910122 (Conalamlnated Model: Dotted Une)

ss Contamination: 1% for Both PDP's With Location Scaled By K(2).6Stress

Mean.24
S.0-2.4

a Strength

Mean.51
S.0.5.11

d
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Stress or Strength

Figure 9. Reliability/normal functions with and without location contamination,
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The results in Figure 10 arc similar to those in Figure 5 except these were obtained from
E 0.03 and K1 = 3. If the estimated R = 0.9987350 is obtained from the empirical data
and a higher R value is required (R = 0.9(6)), then a material with either greater strength or
less contamination would be required. In order to obtain the required 0.9(6) from the origi-
nal contaminated model, a mean strength of 87 is required (see Figure 11). The mean of 87
requirement may not be acceptable to the designer, but this situation can occur if there is a
substantial amount of dispersion in the strength data resulting in a long-tailed PDF. The
above situation shows when a potentially over-design situation could occur because of the
inability to identify the correct PDF in the stress-strength model due to inherent sensitivity
and lack of information in the tail regions. This could prevent a good design from being
accepted if it is required that the assessment of the design be based upon reliability only.

Normal stress-strength models

i_ Relalblity..9999992 (Unconlaminated Model: Solid Une)

a Rellabillty..9987350 (Contaminated Model: Dotted Une)

Stress Contamination: 3% for Both PDF's With Variance Scaled By K(1)=3

Mean.24
,D.-2.4

a. Strength0

/ \ Mean=51

0

10 20 30 40 50 60 70

Stress or Strength

Figure 10. Rellabilfty/stress-strength with and without contamination.
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Normal stress-strength models

Rellsbliltyu.9987350 (Solid Une)
Rellability..999992 (Dotted Une)

Contamination:3% for All PDFs with Variance Scaled By K(1 )=3

*-

Stress Strength Strength! if
•_Meanst4S.D.=2.4 Mean=51 Mean-87

S.0.-5.1 S.M.=5.t/

.. ........
0

I I I

20 40 60 80 100

Stress or Strength

Figure 11. Increased strength requirements for high reliability,

The display in Figure 12 presents four possible reliability values for the case where the
means and standard deviation are: stress (24, 2.4) and strength (51, 5.1). The result from
the uncontaminated normal is 0.9(6). R = 0.995043 was obtained from the contaminated PDF
application. Since, as was shown previously, the stress-strength model will often provide
either relatively very high or low R values depending upon the chance selection of the PDFs.
In order to compensate for the uncertainty in selecting the PDFs for stress and strength data,
extreme value distributions are introduced (see Figure 2) in the reliability computation. This
resulted in R = 0.999045. Unfortunately, this did not provide a value lower than the contami-
nated model result of 0.9950428. In order to obtain additional conservatism in the R esti-
mate, a modification of a method by Bolotin is examined involving the determination of lower
bound on R (see Figure 4 and Equation 19) in conjunction with the extreme value PDFs.
The resultant lower bound estimate of 0.9796063 provides a significantly lower value than that
of the contaminated model. This was also true for all contaminated models in this study.

This lower bound estimate could provide some security in estimating R, although results
may be excessively conservative for some practical applications. In Table 1, the distribution
of R values as a function of the sample size is presented. R values were obtained from
repeated application of the uncontaminated stress-strength model of Figure 5 using randomly
selected, normally distributed samples. For a sample size of 10, R ranges from 0.9(6) to
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0.998417 indicating the instability associated with small samples. Higher order quantiles (e.g.,

60%) were not included since they were all greater than 0.9(6).

Table 1. DISTRIBUTION OF R VERSUS SAMPLE SIZE

Reliability R
Sample Size

Distribution
(%) 10 50 100 1000
0.1 0.998417 0,999932 0.999980 0.999998

(1583) (68) (20) (2)
1 0.999160 0.999968 0.999991 0.999998

(840) (32) (9) (2)
10 0.999943 0.999994 0.999998 0.999999

(57) (6) (2) (1)
25 0.999994 0.999998 0.999999 0.999999

(6) (2) (1) (1)
50 0.999999 0.999999 0.999999 0.999999

(1) (1) (1) (1)
()Corresponding Number of Failures Per Million

Extreme value stress-strength model

Reliability-.9990451
(Extreme Value Model)
Relability.,9796063

Bolotin Lower Bound (Extreme Value)
Reliability..9999992

Strom (Uncontaminated Normal Model) Strength

Mean.24 Reliability..9950428 Mean-51
S.D.-2.4 (A Contaminated Normal Model) S.D..5.1

"- T I' I I - -

10 20 30 40 50 60 70
Stress or Strenoth

Figure 12, Reliability comparison: PDFs and lower bound,
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A sample size of 30 or 100 provides reasonable stability, and a sample of 1000 shows
essentially no variability. The results from Table I show that for a sample of 1000, an esti.
mate of R - 0.9(6) would be acceptable. This is not neces'sarily correct since results from
the table only address the sarnple size issue which is independent of the uncertainties in the
POFe selection process, There are two requirements for obtaining accurate high reliability val.
ues from the strength model: large samples (n > 1000) and knowledge of the population
PDF. Reliability estimates of 0.95 are much less sensitive to the PDF assumption. If there
is a secondary failure mode due to occasional undetected poor manufacturing of the material
or an unusually large load occurs that is not accounted for in the design process, then
unknown lower reliability values (R < 0.95) can exist,

CONCLUSIONS

High reliability estimates from application of the statistical stress-strength model can vary
substantially even for almost undetectable differences in the assumed stress and strength
PDFs. Specifying high R values (e.g., 0.9(6)) for acceptable structural design can result in
Jigber failure rates than anticipated if the assumed PDFs contain shorter tails than actually
exist. Over.design situations can also occur when excessively long-tailed PDFs are applied to
the stress-strength model. An effective method for identifying this nonrobust behavior
involved application of contaminated and uncontaminated PDFs In the determination of
reliability values.

A suggested method for obtaining a lower bound on the reliability estimate provided
potentially overly conservative results but was effective in determing values that were lower
than any of the R values computed for the contaminated models.

The Iauthors' position regarding the computation of high reliability of 0.9(6 ) agrees with
Breiman who says "The probability of failure Pf -- I x 10.6 has an Alice in Wonderland
flavor and should be banned from nonfiction literature." It is therefore recommended that if
high reliability calculations are absolutely essential, then the results should be subjected to a
sensitivity analysis using contaminated distributions. High reliability values are meaningful only
when these values are not substantially affected by an amount of contamination (e) consistent
with the sample sizes, and a severity of contamination which is identified by engineering
judgement.
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IMPROVING NONPARAMETRIC TOLERANCE LIMITS FROM POOLED DATA

Donald M. Neal, Mark G. Vangel, and Trevor D. Rudalevige
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Abstract

This paper introduces a method for obtaining an improved tolerance limit

value for a small sample S of material strength data by pooling with a much

larger sample L. This value represents a 'B' basis material property number

defined as the 95% lower confidence bound on the tenth percentile of the popula-

tion distribution.

In the pooling process both data sets are transformed to a common mean value

of zero in order to pool samples with significantly different strength levels.

Equality of variance is required between S and L. The basis values are obtained

from the pooled samples by application of both nonparametric and parametric

statistical models. Monte Carlo studies showed that by pooling both data sets S

and L, values could be obtained that were less conservative with lower variabil-

ity than from application of S alone.

preceding Page Blank
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Introduction

The statistically based material property value, or B-basis value, is a

statistic which Is less than the tenth percentile of the population with proba-

bility .95. That is, the B-basis value is a 95% lower tolerance limit for the

tenth percentile. In Figures la and lb, a graphical display Is shown for the

basis value probability density function for sample sizes of n - 10 and 50 from

a standard normal population. The dotted vertical lines indicate the 10th

percentile (x.1O) of the population and the probability (basis value

< x.1 o) a .95 for the basis value probability density function. The graphical

display of the basis value density functions show much less dispersion for

n,' 50 than for n * 10. Therefore, small samples will usually result in lower

basis values. In [Is 2, 31 4] various procedures are described for determining

the statistical property values.

The motivation for the work described in this paper resulted from a need by

the aircraft industry to obtain a less conservative statistically based material

property value from a small sample of composite material strength data. Here

'conservative' is to be interpreted to mean 'excessively low', which corresponds

to a design engineer's use of the word. Statistical conservatism, that is a

confidence exceeding the nominal level of .95, need not be present for 'engi-

neering conservatism' to be a problem.

The use of small samples reduces the amount of testing and consequently the

meanufacturing cost of composite aircraft structures. For example, in order to

qualify a composite material to be used in the manufacture of a commercial

aircraft, the FAAC53 requires property values for tension, compression, and

shear tests subjected to the environmental conditions: hot-wet, cold-dry, and

room temperature for three separate batches of material. In the development of
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a composite tail section by one of the major aircraft companies the cost of

testing was more than 20 million dollars. In addition to the cost, exces-

sively conservative basis values can also result in an overdesign situation,

since the value often provides information in determining structural design

allowables.

In order to avoid the penalty associated with using small samples in the

tolerance limit computation, a procedure is introduced in this paper involving

pooling a large sample with a smaller one in order to obtain the property value.

This Is done in order to reduce the inherent variability that occurs from apply-

ing the smaller data set.

In the pooling process the larger data set should be obtained from prior

available test results or from less expensive tests. Ideally, both samples

should be from the same test and environmental conditioning process. Various

combinations of tests and ply-orientations are shown in Figure 2 showing the

sources for combining the data sets. In the pooling process it is assumed for a

given material (eg., graphite-epoxy) there are similar failure modes and conse-

quently equality of variance[63 between the samples.

In order to avoid the uncertainties involved In identifying a statistical

model from a small sample when computing the basis value, two nonparametric

methods (Ferguson[73 and the Modified Hanson-Koopmans[8J) are introduced. In

applying [7J, the larger set represents the prior and the smaller one the empir.

ical data. In [e8 an ordered array of strength measurements are obtained from

the pooled data sets. The tolerance limit is determined from a specific ordered

value multiplied by a factor determined from the sample size of the pooled data.

A parametric method[93 was also applied in the study in order to compare the
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effectiveness of the various methods. This involved a Weibull analysis, where

the shape parameter is obtained from the pooled sample.

A Reduced Ratio method[10) is recommended by the MIL-5 handbook for obtain-

ing basis values from small samples. The procedure involves determining the

ratios of paired observations from a prior data set with a known basis value and

a new data set for which the value is to be determined. A lower confidence

bound is determined for the ratio values. The basis value Is then obtained from

multiplying the bound by the prior value. This method is often overly noncon-

servative.

Determination of Basis Values- Nonparametric Bayesian Method

The nonparametric Bayesian basis value is obtained from the following. Let

Nil¶ In represent the current empirical data which the basis value is to repre-

sent and ftJ3m the prior data obtained from test results or an assumed cumula-

tive distribution function (CDF) F(t).

Posterior Distribution

The posterior distribution using Bayes rule can be written as

AFn(t xi, *X2, . xn -t))- +(--, )(1
ni n( iE

0<(R) +- M

where n Is the sample size of the current empirical data set and t-<(R) is the

prior data sample size. Sx((-. , t3) represents the number of values from the

prior distribution less than or equal to t which are determined from the equal-

ity between the corresponding ordered value of the CDF's and the quantile of t.
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5x ((- &o t]) represents the number of current empirical data values x less

than or equal to t determined from the equality between their corresponding

combined ordered values of the COF's of x and t and the quantile of t where Ex

represents the measure giving the mass of one to the point x.

Equation (1) can be rewritten in the following manner, If

Fo(t) - a<((- , t))/o4R), (2)

represents the prior COF and

Fn(t x1, x20 ... xn) I V Xt((.'W t3) (3)

represents the current empirical data CDF, then

Fn(t Xln x2 " Xn) U n F0 (t) + (1 - Pn)Fn(t xi, x2 , xn) (4)

represents the posterior shown as the weighted ordered array of CDF's, where

R (5)

determines the weight for the prior and current data. By inverting the

CDF's in Equation (4), a value of t can be obtained corresponding to a specified

quantile.

Illustrations

A few simple examples will show the relative ease in obtaining the posterior

distribution Fn.

Let t - 1, 2, 3, 4, 5, and F0 - .2, .4, .6, .8, 1.0,

x - 1, 2, 3, 4, 5, and Fn a .2, .4, .6, .8, 1.0

Since Fn(t Xl, X2 0 s" Xn) " n Fo + (1 - Pn)Fn
A

Then Fn(1 1, 2, 3, 4, 5) * (.5)(.2) + (.5)(.2) a .2
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This is the estimate for first ordered value for x obtained from a good choice

for the prior FO.

If t a 1, 2, 3, 4, 5 and F0 .2, .4 .6, 8.1.0,

x a 6, 7, 8, 9, 10 and Fn I .2m .4, .6, .8, 1.0

Then In(6 6, I, 8, 9, 10) • (1.0)(.5) + (.2)(,3) a .6

This is a poor estimate since .2 Is the correct result, An unacceptable prior

produced this result. The CDF value for t - 1 using the above data is

Fn( 6, 7, 8, 9, 10) a (.2)(.5) a .10

A Bayes estimate of the mean can be obtained as follows,

ifAo( is the mean determined from a prior data set and xn is:the mean of

current sample of test results, then the Bayes mean value for xn is
An

%n(, x2, ... xn) a PnAo 0 (1 - Pn•n, (6)

where Pn is defined in Equation (6).

Nonparametric Tolerance Limit on the Ba esian Quantile Estimate

Since a basis value as described previously requires a tolerance limit on

the quantile estimates, the following describes the process for obtaining that

limit. Initially, a rtndom sample F(y) of size M a 9< (R) + n is assumed inde-

pendent of the mixture of the prior and empirical data sets shown in Equation

(4). By ordering the sample F(y), the following Y(1 ), Y(2 )9 ' Y (M) values are

obtained. The probability density function for Y(t), I < I < M can be written

r( m) E - a) 0192
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where z(0) - F(Y( 1 )) and i - uM with u representing the CDF value corresponding

to i. The tolerance limit y* for yq is defined as,

P(NYq •,Y*) 1 - P -- PEF(yq) > F(y*)]

where yq is the lOOqth percentile of y. Since

NY i~ .r r( m) 2. AM I ( (8) -
Sr(.,•. r ) ((, _-i) M)

from Equation (7), then a 1 - ^4 tolerance limit on yq can be obtained from the

following solving for u:

Jof(z) dz w 1 - P< (9)

where f(z) denotes the integrand in Equation (6).

In the case of the '1' basis computation, X a .05 and q a .10. Equation

(9) can then be written as,

4m41 (10)r(um) r (( i' - ) m) ...

See Table I for tabulation of u and M values that satisfy Equation (10).

If, for example, uM 1 and u - .034, then

,tO M-1

and M w 29, that is P(Y. 10 - Y(1 )) > .95. The tolerance limit is then the

first ordered value Y(I) for the sample size of M a 29. A 'B' basis value can
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now be obtained from the CDF in Equation (4) by the following procedures.

Solving for u in Equation (10) determines the lower tolerince limit of the CDF

of sample size M and from some distribution F(y) where tht I w uM.

Obtaining a lower ordered CDF value from Equation (4) that is approximately

equal to u determines the 1 - o< tolerance limit of the pth quantile of the

posterior CDF for a sample size M.

Example:

If there is only prior data ftJ31 30 and a 'B' basis value Is required where.,

t m 5, 6, 7, 8, 12, 16, 20, 25, ... 40

and F0(t) m .033, .066, .099, ... 1.0

then for M a 30, u m .034 from Table I. The basis value tj is determined

from an approximate solution of u * F(tj) resulting in t 1 - 5; therefore, the

first ordered value of the prior represents the 'B'. basis value, which is the

same as the nonparametric quantile sign test[113 result, when the sample size is

30.

Basis Property Values - Nonparametric ( HK) Process

A nonparametric procedure (HK)[ 8 3 for estimating tolerance limits is intro-

duced for computing the 'B' basis value for any sample size > 2. The method is

a modification of Hanson-Koopmans[123 process. The modification has reduced the

excessive conservatism In-computing property values when compared with the

original HK method.

The method Involves the following. Let x1 , see xn be the order statistic of

an Independent and Identically distributed sample from a continuous distribution

F. Assume that F is log-convex, that is - log F(X) Is a convex function. The

class of log-convex functions -Includes a large enough group of distributions so
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that following procedure involving log-convex functions can be considered non-

parametric.

The lower tolerance limits of the form

Trs = K xr + (1 - K)xs (12)

can be obtained where r < s and K > 1. When Trs is used with positive data

values, negative tolerance limit can be obtained which are not valid if the

distribution F is zero for any negative values. A practical solution to this

problem is to apply the Hanson-Koopmans approach by taking the log of the data

x, that is,

Trs = K log xr + (1 - K)log xs (13)

and then obtain by exponentiation the following
S K (log x-T w e r + e•0 -KOlog x a X (14)

For most distributions of interest, Ttq still provides conservative tolerance

limits, although technically Ttj is valid for a class of distributions smaller

than the log-convex class corresponding to T1j.

In order to determine the 'B' basis value, the i, J, and K values are

obtained for a given n are shown in Table II.

Weibull Model Property Values - Pooling Data For Shape Estimate

A Weibull method was Introduced by[ 9J in order to obtain 'B basis material

property values for various tests and conditioning processes of composite mate-

rials. Although the Weibull scale parameters can differ depending on the type

of test or condition, the within sample variances are usually similar. By this

assumption, the data from the various sources are pooled in order to determine

an approximate population shape parameterp< * for the Weibull distribution. In

order to obtain a basis value for some specified smaller data set Y (usually
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from tests and conditioning that requires considerable expense), the following

relation Is applied:

'B' *- y ,- ln(O.90) )l/D4*[2n/ 9 ,(2n)]I/o (15)

where the quantity 2 is the .95 Chi-square quantile with 2n degrees of

freedom, and n is the number of Y values.. 1y3 Is the Weibull scale parameter

estimated from the smaller sample of size n. Equation (15) is not valid unless

can be adequately represented by a large enough sample to provide a good

approximation to the true o< value. The data Is obtsined from various tests

(tension, compression, and shear) and conditionings (hot, cold, hot-wet) in

order to obtain the value 0<*.

The Pooling Process

In order to effectively apply the previously discussed methods, a moderately

large data set (n > 30) is suggested. This is accomplished by pooling a smaller

set S (limited available data) of size nS with a larger set L (from prior test-

ing) of size nL. In the HK process the objective is to represent S with com-

bined data sets S and L of sample Sp with size m m nL + nS obtained from S and

L. In the Ferguson's Bayes method the prior is represented by L and the empiri-

cal data by S. The Weibull analysis method obtains information for estimating

the population shape parameter a< by pooling S and L and using S to determine

the scale parameter, 4 .

Ideally, If the mean of S and L are equal and their variances are also

equal, then pooling could easily be justified. If the mean values differ, then

a normalizing procedure combined with an equality of variance test is required.
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This involves representing S and L by the distributions S* and L* with means

equal to zero, that is, let

and (16)

L*u L-

where S and L are means of the S and L data values. A schematic of this

transformation is shown in Appendix A. The variance equality between S and L

requirement is stated as,

VAR[S*1 a VAREL*]. (17)

In order to determine if equality of variance exists, the Siegel-Tukey

nonparametric rank sum methodC133 was applied, The process Involved combining

S* and V* values into a single ordered array and assigning low ranks to extreme

observations and high ranks to central observations. That is, assign rank 1 to

lowest number of the sequence, ranks 2 and 3 to the two highest values, then

ranks 4 and 5 to the next two lowest. This process Is continued until all

numbers in the sequence have been assigned a rank Rt. Note, for odd number of

values, the middle value Is not counted so that the highest rank is even. In

the ranking process, knowledge of the assigned values from S* and V* must be

retained.

The sum (R1 ) of the ranks is obtained for either S* or V*. Usually, the

smaller data set is selected in order to reduce the amount of computation. Rs

obtained from the S* ordering can be written as,

RS ,where I depends on ordering of ranking for S*
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The hypothesis test for VARES*) - VAR[L*] Involves applying the Wilcox Rank Sum

(two sample) test 133 as follows. In order for the hypothesis to be accepted,

then

R > Rc, where Rc is (18)

a critical value obtained from tables In Reference (13). The values are tabu-

lated as a function of ns, nL, and a specified significance level. For example,

a 10% significance level would represent a two sided test with a 5% to 95%

interval of acceptance. If Re > Rs, then reject the hypothesis.

An example showing application of the above procedures is as follows,

If sample from S*: 5, 8, 10l 19, 25

and If sample from L*: 4, 9, 12, 14, 16

then

Score 4 5 8 9 10 12 14 16 19 25

Sample L* S* S* V S* L* L* L* S* S*

Rank 1 4 5 8 9 10 7 6 3 2

and Rs n 4 + 5 + 9 + 3 + 2 - 2 3

The critical value from the tables is Rc v 19 for ns a nL a 5 with significance

level of 10% (a two sided 5% level); therefore, since RS > RC, there Is no

significant difference in the variances between S* and L* at the 10% level.

'B' Basis Values for S* and S from Pooled Data

Bayes Solution

If the transformation (Equation (16)) has been applied and the equality of

variance Is established between S* and L*, then IB' values can be obtained using

the combined data sets from both S* and L*. In the Bayes application let the

smaller sample x (newly obtained data) to be represented by the S* values and
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the larger sample t (the prior) by L*. The approximate solution to v -_ F(Sj)

for j determines the jth ordered value representing the 'B' basis value (S*.3ý

when u Is obtained from the solution In Equation (10).

Nonparametric HK Method

The nonparametric[ 8 3 solution for obtaining 'BI basis values involves pool-

ing the values from S* and L* and letting the resultant array of values be x in

Equation (14) with sample size m a nS + nL. Let this value be denoted SB. This

method is very simple to apply yet provides accurate results for any sample size

greater than 2. The basis values for S* is not sufficient since S and L were

the original data sets Involved in the analysis. Therefore, the following

transformation is required:

S " s s + 5S (19)

where SB Is the required basis value for the small sample S. The S.96 values

represent the lower 95% confidence value for the mean of the S values. The

purpose of applying 1,g9 was to prevent a situation where the required 95%

coverage was not obtainable due to variability in estimating the mean S of S.

SB values were consistently less than the 10% point, 95% of the time (defi-

nition of 'B' values). The results from both simulated and actual test data

showed on occasion excessively low SB values, but the coverage was maintained

which was not necessarily so when S was substituted for 1.95 in Equation (19).
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Weibull Method - Estimating Population Shape Parameter

In Equation (15) the pooled estimate p<* is obtained from the maximum

likelihood estimator (MLE) using combined data sets S and L , where
A

S S/ s and

L L

S and /3L are the Weibull scale parameter estimates for S and L respectively.

If a basis value for S Is required, then, after the initial equality of variance

between S and LA is established, the value can be obtained from the follow-

Ing:
'Bs = 4S[. I n(0.,90) ]'/1 * [2n/ O- .95(1n)]1 * (20)

In Appendix B a flowchart is shown summarizing the ordered procedures required

for applying methods described in this report.

Results and Discussions

In Figure 3A, the 'B' basis value results are shown for the small sample S

with or without a contribution in the variance estimate from large sample L. NB

is the nonparametric Bayes solution where the prior is represented by L with

sample size of nL - 30 and empirical data by S with size nS - 6. The HK values

represent the modified Hlanson-Koopmans method results where L and S are pooled.

W(6) and W(36) represents the property values obtained from the Weibull analy-

sts[2, 33 with a sample of 6 and 36 respectively from S. The HK(36) was deter-

mined from the modified Hanson-Koopmans method with 36 values from S only. The

data was obtained from randomly selecting samples from Weibull distributions

with scale 14- 100, and a randomly selected shape parameter u<'L from a uniform

distribution. The range of o'L values were from 5 to 25 for L. The S distri-

bution shape parameter ."'S was 15. By introducing the variability in w. LO
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evaluation of the equality of variance test can be made with respect to accepta-

bility In pooling of L and S and using L as a prior in the methods. The NB, HK,

and W(36) 'B' basis values show the required coverage, that is, 95% of the 'B'

values are equal to or less than the 10% point of the population distribution.

The results are exceptionally good in that they are almost exactly what is

required without being either overly conservative or nonconservative in addition

to verifying the acceptability of the equality variance test. W(6) and HK(36)

are slightly conservative because of the lower estimate measured from the true

10% point. The W(6) - 82.2 is not excessively conservative for nS - 6, although

using data from a Weibull model could have been helpful. The Weibull result

W(36) should be a good estimate since the 36 values came from a known Weibull

model o< w 15, /- 100. The fact that NB and HK provided equally good results

shows the methods can provide 'B' values for a small sample, which are equiva-

lent to those values obtained from a much larger Weibull sample, when pooling

the large and small samples. N(6), basis value obtained from the normal

model~l, 2, 39 4] result is nonconservative with '8' a 87.5, although it is not

excessive for n - 6.

In Figure 3B the range of 'B' value results are shown with HK(36) and W(36)

having significantly less variability than the other methods. This Is due to

the much larger sample size which is available to estimate directly the 'B'

value. W(6) and N(6) have an excessively large amount of variability (a range

of 45 to 95) which is due to the instability (see Figures IA and 1B) in estimat-

Ing the parameters required to compute basis values from the small sample sizes.

The NB and HK solution show less variability (a range of 55 to 92) than W(6) and

N(6), but Is still quite large due to the inability to estimate the mean value

from S for 6 data values when the reverse transformation is made in Equation
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(19). If the normalization process was not required (L and S from the same

population), then variability in NB and HK can be reduced by applying pooled

non-normalized data to obtain mean value in the reverse transformation.

The experimental test results used In the analysis showhthe following fig-

ures were obtained from published data in [14]. In Figure 4A, both S and L are

from the same population of short beam shear tests applied to Narmco composite

material. The NB and HK basis values were obtained by substituting the 3.95

value in Equation (19) bytUn from Equation (6) for the reverse transformation

described in Equation (16). The results in Figure 4A show excellent agreement

between the 10% point and the 95th percentile of the basis values for NB, HK,

N(6), and HK(36).

In Figure 4B, variability in the basis value for NB and HK is very small

relative to W(6) and N(6) indicating the desirability of the proposed nonpara-

metric methods. With S and L from the same population permittt4 the applica-

AA
tion of,/Un in Equation (19). This resulted in a more stable less conservative

basis value since the Bayes estimator$•'n is determined from more information

than S.

In Figure 5A the 'B' basis values were obtained from 1,000 random samples of

short beam shear test results. The material was manufactured by the Hercules

Co., Utah. In all cases the coverage was obtained (all 'B° values less than the

10% point), although they were somewhat conservative. NB and HK were approxi-

mately 9.2 where the 10% point is 9.8. The W(6) value of 8.6 was exceptionally

low. The 6% difference between 10% point and the basis value obtained from NB

and HK analysis Is much better than the 14% difference determined from W(6).

In Figure 5B the ranges are much smaller for NB, HK, and HK(36) when com-

pared to W(6) and N(6), which again shows the advantage of having more data
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available by combining the L and S samples. A low value of 7 and the highest of

9.5 from NB and HK is much better than 4.2 to 9.2 from W(6) method.

The NB and HK methods were very effective as shown in Figure 6A in obtaining

a 'B' basis value for crossply tension test results (manufactured by Narmco)

when combining with prior available unidirectional tension data. The N(6)

estimate also provided desirable coverage. Figure 6B shows less variability in

basis value estimates for the NB and HK procedures when compared to the small

sample W(6) and N(6) methods. The reduction in the variability in the 'B' value

is the primary advantage of using NB and HK methods when compared to the W(6)

and N(6) analysis results, although reducing the model identification issue is

also desirable.

Figure 7A shows excellent results for the NB and HK by providing IB' values

almost equal to the required 10% point. W(6) basis value is overl) conserva-

tive, and N(6) and HK(36) do not meet the required coverage rate by having

values somewhat greater than the 10% point. The results demonstrate the advan-

tage of the NB and HK methods being a nonparametric procedure in determining

basis values for data obtained from relatively expensive (unidirection small

sample) test methods by pooling the data with less expensive (short beam shear)

coupon test results.

Figure 7B shows the relatively small variability In the 'B' estimate from NB

and HK and HK(36) when compared to the small sample procedures W(6) and N(6).

The 'B' basis results from the crossply compression data using additional

data obtained from a very simple and inexpensive short beam shear testing proce-

dures are shown in Figure 8A. The NB and HK methods show less conservative 'B'

estimates than W(6). The '0' values from W(6) are somewhat conservative with
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N(6) results showing good agreement with the 10% point. The variability in 'B'

values in Figure 8B is similar to prior results in Figure 7B.

The crossply compression 'B' values from sample of 6 Narmco material using

the additional 30 short beam shear data values from the material made by the

Hercules Co. are shown in Figure 9A. The NB and HK results are about 5% below

the 10% point which is not excessively low. Although excellent coverage was

obtained for N(6), extensive variability in the basis value results is shown in

Figure 9B.

The results In Figure iOA show, for large sample of 90 and small sample of 6

obtained from random Weibull samples, excellent agreement between the 10% point

and the estimated 'B' basis values. The exception is the SHB method (see Equa-

tion (20)) which fails to provide the proper coverage. This result is probably
A

due to the instability in estimating scale parameter/I from a small sample of 6

values. If a loweir 95% confidence was obtained for/3., then the SHB method

could possibly provide satisfactory results. The similar results shown for both

W(6) and W(96) show that if the Weibull analysis, even for small samples, is

applied to data from the Weibull population of data, accurate 'B' basis values

can be obtained that provide the coverage and also are not overly conservative.

Results in Figure 10B show a value of 42 for W(6) could be obtained compared to

the 85 for the 95 percentile. Although acceptable coverage for W(6) was

obtained which was possibly due to the use of known Weibull data, the variabil-

ity is substantial in the basis value estimate. Since it is Impossible to

correctly identify models for small samples, it is suggested the nonparametric

methods (NB and HK) in this paper be applied since the methods do not require

prior knowledge of the assumed distribution. The SHB method shows relatively

low variability In estimating the basis value but does require knowledge of

distribution (eg., Welbull ;normal).
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Conclusions

Efficient tolerance limits ('B' values) can be obtained for small samples of

composite material strength data when pooled with a much larger data set of

similar material but obtained from potentially different mechanical properties.

Ideally, both small and large data sets should be obtained from the same test

and material in order to maximize the effectiveness of the proposed methods.

The proposed methodology resulted in reducing the overconservatism and excessive

variability obtained from using only the smaller sample in computing the toler-

ance limit.
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Appendix B: Criteria for Combining Data S and L
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Table I: M and u Values for Bayesian Basis Value Computation

M U M U M u M U
1 0.021953 51 0.044804 101 0.057686 151 0.064302
2 0.017855 52 0.045192 102 0.057856 152 0.064395
3 0.016529 53 0.045565 103 0.058023 153 0.064514
4 0.016140 54 0.045937 104 0.058188 154 0.064609
5 0.016199 55 0.046301 105 0.058352 155 0.064717
6 0.016516 56 0.046648 106 0.058517 156 0.064814
7 0.016997 57 0.046996 107 0.058670 157 0.064912
8 0.017590 58 0.047339 108 0.058837 158 0.065010
9 0.018264 59 0,041673 109 0.059006 159 0.065099

10 0.018996 60 0.048011 110 0.059156 160 0.065193
11 0.019769 61 0.048318 111 0.059313 161 0.065273
12 0.020570 62 0.048642 112 0.059454 162 0.065382
13 0.021391 63 0.048945 113 0.059619 163 0.065462
14 0.022223 64 0.049255 114 0.059761 164 0.065555
15 0.023060 65 0.049563 115 0.059914 165 0.065658
16 0.023897 66 0.049848 116 0.060051 166 0.065'734
17 0.024729 67 0.050144 117 0.060192 167 0.065822
18 0.025554 68 0.050421 118 0.060344 168 0.065910
19 0.026368 69 0.050695 119 0.060480 169 0.065996
20 0.027171 70 0.050968 120 0.060628 170 0.066108
21 0.027959 71 0.051238 121 0.060754 171 0.066192
22 0.028734 72 0.051506 122 0.060883 172 0.066277
23 0.029491 73 0.051771 123 0.061031 173 0.066384
24 0.030233 74 0.052034 124 0.061162 174 0.066449
25 0.030959 75 0.052284 125 0.061292 175 0.066530
26 0.031666 76 0.052530 126 0.061420 176 0.066613
27 0.032361 77 0.052773 127 0.061547 177 0.066705
28 0.033033 78 0.053017 128 0.061679 178 0.066789
29 0.033695 79 0.053244 129 0.061802 179 0.066872
30 0.034339 80 0.053479 130 0.061933 180 0.066934
31 0.034967 81 0.053702 131 0.062065 181 0.067007
32 0.035577 82 0.053932 132 0.062179 182 0.067098
33 0.036172 83 0.054160 133 0.062293 183 0.067176
34 0.036754 84 0.054375 134 0.062430 184 0.067258
35 0.037328 85 0.054600 135 0.062553 185 0.067333
36 0.037884 86 0.054808 136 0.062667 186 0.067418
37 0.038420 87 0.055017 137 0.062784 187 0.067486
38 0.038952 88 0.055221 138 0.062894 188 0.067569
39 0.039461 89 0.055435 139 0.063010 189 0.067628
40 0.039964 90 0.055634 140 0.063128 190 0.067720
41 0.040459 91 0.055831 141 0.063245 191 0.067794
42 0.040944 92 0.056024 142 0.063344 192 0.067871
43 0.041409 93 0.056215 143 0.063459 193 0.067952
44 0.041864 94 0.056417 144 0.063550 194 0.068022
45 0.042314 95 0.056599 145 0.063666 195 0.068103
46 0.042751 96 0.056781 146 0.063763 196 0.068178
47 0.043182 97 0.056960 147 0.063899 197 0.068237
48 0.043596 98 0.057153 148 0.063985 198 0.068315
49 0.044009 99 0.057332 149 0.064101 199 0.068388
50 0.044413 100 0.057502 150 0.064197 200 0.068459
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Table I1: Modified Hanson-Koopmans Constants for Basis Value

6r . . r , k

2 1 2 35.177
3 1 3 7.859
4 1 4 4.505
5 1 4 4.101
6 1 5 3.064
7 1 5 2.858
8 1 6 2.382
9 1 6 2.253

10 1 6 2.137
11 1 7 1.897
12 1 7 1.814
13 1 7 1.738
14 1 8 1.599
15 1 8 1.540
16 1 a 1.485
17 1 a 1.434
18 1 9 1.354
19 1 9 1.311
20 1 10 1.253
21 1 10 1.218
22 1 10 1.184
23 1 11 1.143
24 1 11 1.114
25 1 11 1.087
26 1 11 1.060
27 1 11 1.035
28 1 12 1.010
29 1 -- 1

30 2 12 1.373
31 2 12 1.344
32 2 12 1.315
33 2 13 1.270
34 2 13 1.245
35 2 13 1.221
36 2 13 1.197
37 2 13 1.174
38 2 13 1.151
39 2 13 1.129
40 2 13 1.108
41 2 14 1.083
42 2 14 1.064
43 2 14 1.045
44 2 14 1.027
45 2 14 1.009
46 2 -- 1
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Figure 2: Composite Material Tests/

Lamina to Laminate Conversions
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TARGET PRIORITIZATION TO OPTIMIZE EXPECTED
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Abstract

The U.S. Army Ballistic Research Laboratory has been research-
ing innovative methodologies directly applicable to the problem of tar-
get value analysis (TVA), i.e., assigning values to targets for the purpose
of developing an optimal target engagement ordering. The problems
associated with assigning target values as an aid in target selection have
been examined by many approaches, by both other government agen-
cies and contractors. Here the question is examined from the standpoint
of optimizing some utility function. Expected values of utility functions
are derived in terms of the two chosen research parameters, rate of fire
and probability of kill, using stochastic techniques. In the case of two
enemy targets, an optimal ordering for all utilities investigated is
obtained. Some special cases of utilities are considered and the results
generalized for an arbitrary mix of targets.

Preceding Page Blank
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1. Introduction

The problem of assigning values to targets as an aid in target selection has been exam-
ined for over a decade by many approaches, e.g., Fire Support Mission Area Analysis, US
Army Material Systems Analysis Activity military worth study, classification tree methodol.
ogy (another approach being pursued by the US Army Ballistic Research Laboratory (BRL)).
During the summer of 1988, Dr. Douglas H. Frank, Associate Professor, Department of
Mathematics, Indiana University of Pennsylvania, worked with Ann E.M. Brodeen, one of the
BRL's principal target value analysis (TVA) investigators, to consider a probabilistic
approach to the problem. (Dr. Prank was assigned to the BRL under the sponsorship of the
US Army Summer Faculty Research and Engineering Program.)

Target values are assessments keyed to the enemy's perception of the functions of its
assets; TVA is the methodology which identifies potential high value target sets, le., assets
which the enemy threat commander requires for the successful completion of his mission,
within the given tactical scenario. These targets, if successfully countered, can provide the
friendly force with a tactical opportunity. Although the TVA process may include complex
algorithms, it should be simple enough for the user, i.e., the soldier, to understand. Simply
put, he must be able to influence the process in order to meet the specific needs of his com-
mander, For the field artillery to remain responsive, the soldier must be able to change target
priorities as quickly as the tactical situation changes and be able to interpret the overall
impact that such changes may have on the outcome of the operation.

Although TVA is a very subjective issue, the intent of this research was to show that
assigned target values can be based on mathematical models. Two objectives were defined for
the proposed study: 1) define a value for each enemy target in a target array such that a tar-
get engagement sequence can be determined, and 2) evaluate the target engagement
sequence from the standpoint of optimizing an expected utility function based on a desired
tactical outcome.

Details of the BRL's probabilistic approach to target value analysis based on a random
battle scenario are outlined in this paper.

2. The Battle

In our earlier research, we considered target engagement orderings to maximize the out-
comes of a simple battle in which both the friendly fire unit and the enemy targets fired
simultaneously. Here, battle outcome probabilities and optimal engagement orderings are
considered in a manner similar to that of the simple battle [1,2].

The random battle is between a single friendly fire unit and a group of enemy targets.
Each enemy target as well as the friendly fire unit fire independently and at a rate of fire that
is exponentially distributed with different mean rates and removal, i.e., kill, probabilities. The
kill probabilities are constant from volley to volley for both the fire unit and each enemy tar-
get.
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2.1 Parameter Selection

Subject matter discussions held with MAJ William T. Dougherty, Field Artillery Coordi-
nation Officer assigned to the BRL when the WVA probabilistic approach was initiated, led to
the selection of target vulnerability and target threat as the parameters of interest. When
considering an enemy target's value, it is natural to characterize this value by the ability of the
friendly fire unit to remove the enemy target within some time frame, .e., target vulnerabil-
ity, as well as by the ability of the enemy target to achieve its objective within that same time
frame, i.e., threat. Removal of the enemy target Ls considered to be either its complete des-
truction or the infliction of a level of damage severe enough to abate the target's contribution
to the enemy force given some particular tactical scenario. The objective of the enemy target
might also be either the destruction of the friendly fire unit or the infliction of a severe level
of damage upon it. (It should be noted that the definitions of the parameters developed by
the principal investigatots are in the interest of the research and may not be in accordance
with those of the field artillery community.)

2.2 Two Target Battle

We first derive re'sults for a battle with two enemy targets and then extend the results to
T targets.

Consider the following parameters for targets i w 1, 2:

PB, - probability of friendly fire unit removing target £

PN w probability of friendly fire unit being removed by target i

Pi a mean rate of fire of friendly fire unit against target i

p, - mean rate of fire of target i against friendly fire unit

Bi pi P3 a friendly fire unit firepower against target i

( vulnerability of target i )

R, = 1 PKP - target i firepower against friendly fire unit

(threat of target i)

We first show that the results of the classic stochastic duel can be extended to a battle
between a single friendly fire unit and two enemy targets [3,4]. We assume target 1 is engaged
until it is removed before target 2 is engaged. The battle concludes when either the friendly
fire unit is removed or it has removed both targets. For our purposes we define a victory as
the removal of both targets regardless of whether or not the fire unit survives.
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If a target m, has a mean rate of fire r ona a kill probability p, then the probability of not

killing the target in some time h is

QW(h) = exp''•. (1)

Eq. (1) will hereafter be referred to as Lemma 1. The following proof is offered.

Let X be the number of volleys fired during some time h. Then X has a Poisson distribu-
tion with mean rh.

"G eh (rh)
.(h) E X1 (1.p),

X-0

me e'rehtp

= ne~hp. (2)

Our Lemma 2 states that in a battle with two enemy targets, the probability of the friendly
fire unit removing target 1 before being removed is

B1

P[1 NOT] - . (3)Bi + R1 + R2

Lemma 2 is proved as follows. Divide the time of battle into units of length I and consider the
absorbing Markov process formed [5]. From this process the probability of the event occur-
ring is

oo

s"O

(. QB, (h) I QR, (h) QR2 (h/)

-(Q, (11 ) OR, (h) QR()2)

226



Applying Lemma 1, we obtain

A (pPt + Ps P%) A,(PI Pat + 01P%, + ftP%)

Ph[ 1 I NOT] .6 - -. (5)A (01Pt+Apsi•. + PI P%)
1-

piP31  B1

P[ I NOT] - llmPh[l I NOT] -" B. (6)
h-*O 01Pn13 ÷plPI ÷+ + PI, B1 +R1 ÷R

In a battle between the friendly fire unit and target 2, the probability of destroying the
target is

B2 +%

Lemma 3 is a well-known result [4].

Theorem 1 defines w, the number of targets destroyed. The density of w is

R _ + R2 B1 R2
BI + R , + R2 (B1 + R1 + R2 )(B 2 + R2)

B1B2

f(2) . . ... (8)
(BI + RI + R2)(B2 + R2)

The event w - 0 is the complement of the event stated as Lemma 1. Because the battle is a
Markov process we have

f(1) = P[i I NOT].(l-P[2]) and f(2) P[l NOT],P[2]. (9)

The result follows from Lemmas 2 and 3.
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2.3 Multi Target Battle

Suppose there are T targets which are engaged in numerical order. We extend the
definitions of B, and R, for i " 1, 2, ..., T.

T

Define Sim ER/, S0=0, and B0 =1. (10)

The proof of Theorem I can be easily generalized. If w is the number of targets removed in a
battle with T targets, Theorem 2 states that the density of w is

, B, S___ ___

Hl B +S, if w<T
im~o W++S BW÷+1.

f(w) B (11)

S -l, if w=T
1ul B1+S1

3. Evaluation Criteria

In general, decision makers such as gamblers, baseball managers, Insurance companies, and
others engage in what is colloquially refered to as "playing the percentages", characterized by
a preference for the optimal act that yields the greatest long-run average profit. That is, the
optimal act Is the one that would result in the largest long-run average profit if the same deci-
sion were to be made repeatedly under the same conditions; as the number of repetitions
becomes large, the observed average payoff approaches the theoretical expected payoff. How.
ever, many important decisions are made under unique sets of conditions, and it may not be
realistic to think in terms of many repetitions of the same decision situation. Indeed, many of
the field artillery commander's most important decisons are unique, high-risk situations,
whereas less Important, routine decisions are ones that may be delegated to subordlnates.
Therefore, It is useful to have an apparatus for dealing with one-time decision making.

Utility theory provides such an apparatus, as well as providing a logical method for
repetitive decision making. The term "utility" as conceived by Von Neumann and Morgen-
stern (1947] is a measure of value used in the assessment of situations involving risk, which
provides a basis for decision making. Different sets of axioms that imply the existence of utili-
ties with the property that expected utility is an appropriate guide for consistent decision
making are presented in Von Neumann and Morgenstern (1947], Savage [1954], Luce and
Raiffa [1957], Pratt, Raiffa, and Schlaifer [1965], and Fishburn [1970].

228



3.1 Construction of Utility Functions

The different algorithms for determining target values do not always yield the same tar.
get engagement ordering. This poses the obvious question of which approach should be used.
The desired approach would be the one whose target ordering provides the "best" result.
However, if "best" is interpreted as "total victory", and if T, the total number of enemy targets,
is large, then "victory" for a single friendly fire unit would quite likely be a rare event. Thus,
additional criteria shall be considered for assessing "best" results.

Recall that the overall objective is to assign a value to each enemy target to determine
the order in which to engage the targets. This order should be chosen to maximize some
desired result of the battle. Therefore, consider a utility function, U, of the number of targets
removed, W, by the friendly fire unit during the battle. This function should depend on the
battlefield scenario as well as the desired battle objective of the friendly fire unit. Assume
that U(W) will be non-decreasing, U(O) m 0 and U(T) = 1.

Generally, U(H) Is assigned over a continuous range of possibilities; however, special
liberty has been taken in the analysis of the utility functions discussed below. Since each of
these utilty functions is based on the mathematical model's assumption that an enemy target
either survives or is completely removed from the battle, these functions are evaluated only at
discrete points,

3.2 Utility Based on Total Victory

If the goal is to remove all enemy targets, then we wish to maximize f(T). This is an
extreme example of a convex funtion.

0, if W<TU1(W).{ = f - (12)U I W) f, if W=T, (2

B1...BT
Note that f(T) - .........(B1 +Sl'B + sr)

Since the numerator is the same for all permutations, we must minimize the quantity,

T

fl (B, + S,).
i.22
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3.3 Utility Based on the Number of Hits

If bitting all targets is not essential, and all targets are equally important, we may wish to
maximize the number of targets removed.

W
U2(W) - (13)

T

T w

For utility two we wish to maximize E -, for f(w).
T

3.4 Utility Based on a Reduction in Threat

Lemma 2 shows that the combined threat of an array of targets acting as a single target
is the sum of their Individual threats. Thus, in removing w targets, we reduce the overall
threat from S, to Sw, +I

U3(W) -1--, (14)
S1

where we define Sr +1 = 0 . Note that U 3 (W) depends on prioritizing the targets according
to VAL 3, whereas utilities 1, 2 and 4 are not dependent on any specific target value algo-
rithm.

3.5 Inflective Shaped Utility

In many battles the enemy can be halted when it loses only a small proportion of its
forces. In these cases an inflective utility function seems appropriate. For convenience we
consider an extreme example of an inflective type function.

0, if W<.3T
U4(W)- If W>.3T (15)
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4. Values Based on Two Targets

For two enemy targets there are only two possible permutations: 1,2 or 2,1. The utility U
will be determined by the utility for target 1, that is, U(1). We will derive a generic target
value algorithm for all utility functions and examine the four special cases from Section 3.

4.1 General Optimal Results

Suppose U ( 1) w c is the same for either target permutation. Let E1 [ U ] and E2 [U ] be
the expected utilities for the orderings 1,2 and 2,1, respectively. From Theorem 1

B1 (cR 2 + B2)81[U] -- .. and
(BI + R, +R2) (B + 2)

B2(cR + BI) (16)
(B2 + R1 + R2 )(B 1 + RI)

Setting E [U] > E [U] and sinplifying, we obtain an Inequality concerning the threat and
vulnerability for each target.

We now state Theorem 3. El [U] > k-(U] if and only if

Bj(B 1 + RI) B2 (B2 + R•)
. .. . .. (17)

(B + S)(cR + B,) (B, + S)(cR,+ B2)

where S - R1 + R2 is a constant representing total enemy firepower.

Theorem 3 gives us a generic target value algorithm for utility c. The value of a target
with threat R and vulnerability B relative to a utility c is

B(B+R)

(B + S)(cR + B)

The shortcomings of this definition are the presence of S which depends on the entire
array of targets and the limitation to utilitites which are independent of target orderings. One
approach is replace S by 2R (where S is based upon knowledge about target 1 only). We do
not recommend this since optimality is not guaranteed. We will see in some of the special
cases that an equivalent value without S can be obtained.
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To overcome the second objection, if the value of U(1) for an ordering can be
expressed in terms of the second target, we can redefine value by interpreting c for a target as
its utility value when it is second.

4.2 Value for Utility One

B+R
For utility 1, c = 0, therefore, the generic value algorithm reduces to --,

B+S

Bi + Ri B2 + R2
since > if and only if R1(B1 + R1 ) > R2(B2 + R2).

BI+S B2 +S

Therefore, the definition of a value for utility one is

VAL1 - R(B+R). (19)

In the two target value, the order of battle based on VAL 1 will maximize E [U 1].

4.3 Values for Utilities Two and Three

For utility 2, c = 1/2. No simplified value can be found for this case.

VAL2 = B(B+R) (20)
(B + S)(1/2R + B)

Orders based on VAL 2 will maximize E [ U 2 . VAL 2 can also be written as

[ 1 + or but neither of these forms seems toB+S R+2 R+2B S-R

B+R
lead toward the elimination of S.
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In the case of utility 3, the value of c 1 (1- R) / S, therefore, the generic target value can be
written as the following definition

VAL3 - BS(B+R) (21)
(B + S)(R 2-R+ BS)

No equivalent form without S Is apparent.

4.4 Value for Utility Four

Given two targets for utility four, c = 0. Thus, we are interested In mfiimizing the pro-
bability of no hits. This occurs when B1 > B2 .

VAL4 - B. (22)

5. Concluding Remarks

Each of the values examined has interesting features. If the desired battle objective is to
remove as many targets as possible, then VAL 1 appears to be best. If the goal is to inflict as
much damage as possible on the enemy, as measured by U3, then VAL 3 seems most
appropriate. Unfortunately, VAL 4, which almost always gives optimal results when consider-
ing a complete victory, does not perform well for other considerations.

One of the obvious needs is a method for acquiring accurate values for the vulnerability
(P) and threat (R) parameters. These values not only depend on inherent target characteris-
tics, but also the battlefield conditions and the missions assigned to the friendly fire unit. Ini-
tially, the literature could be perused for probabilities of hit and kill. One promising statisti-
cal approach would be to utilize the CART software, with input in the form of experimental
data, i4mulated data, and officers judgments [5].

Additional conditions for optimality of U 1, U 2, and U 3, as well as other utility func-
tions, should be developed.

The battle scenario is rather simplistic. Indeed, the battle may be criticized since it
assumes the friendly fire unit has only one weapon whose removal terminates the battle.
More sophisticated simulations should be developed and the results from all models should
be compared.

The values and evaluation criteria presented L-1 this paper may be used, but should be
regarded only as an interim step in the development of optimal target engagement orderings.
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A Performance Model for a System
Using Range and Angle of Arrival Information

Andrew Anderson Thompson III
Ballistic Research Laboratory

Abstract
This paper develops a performance model for a system using AoA and range

Information to estimate the location of a target. The ideas used to derive and validate
the performance model are presented, and then a procedure for evaluating specific
sensor systems is discussed.

1. Introduction

Many sensor systems have been developed using angle of arrival (AoA) informa-
tion for two separate receivers. As a rule of thumb the error associated with these sys-
tems is a function of range to the target over the separation of the two receivers. As
this ratio becomes large, the estimate loses its value. H. Bruce Wallace of the Ballis-
tic Research Laboratory (BRL) has proposed that range Information also be utilized
in order to have a worthwhile target location estimate, There Is a large class of poten-
tial sensors fitting this description. These can be classified according to the type of
electronic processing they use and the parameters that are important for that type of
processing. The goal here is to find a general model that allows for various levels of
detail in the performance evaluation of this class of sensor systems.

ThIs paper develops a performance model for a system using AoA and range
information to estimate the location of a target. The ideas used to derive and validate
the performance model are presented, and then a procedure for evaluating specific
sensor systems is discussed.

First the two dimensional case is examined in detail. Then the results of applying
the same ideas to the three dimensional case are presented. Both models were vali-
dated through the use of a simulation. The procedure used to validate the three
dimensional model is presented. The next two sections present some electronic
models from the literature associated with the accuracy of angle of arrival and range
measurements. Finally, a method for the evaluation of a particular system is given.
2. XY Covarlance Model

In this section a performance model for a system processing one range measure-
ment and one AoA measurement is presented, The measurements are from a polar
coordinate system but the system performance is to be in the Cartesian coordinate
system. The focus of the discussion is on how the measurement errors effect target
estimation in the Cartesian plane. The relationship between an xy location and an
AoA range coordinate is straight forward.

x = R cos e + x. (1)

y = R sin e + y
when R is the range to the target and 0 is the AoA to the target. For the rest of the
discussion we assume that xo -0 and y. - 0.
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A common approach for relating measurement errors to the x-y domain is
through the partial derivatives of the location with respect to the measured quantities
(Reference 1 and 2). In the x direction the changes caused by range measurement are
AR cos 0. Changes caused by increasing the angle move x closer to the origin by the
amount R sin (AO) sin(G). In deriving the following model several assumptions will
be made. Afterwards it will be shown that the assumptions are statistically reasonable.
Perturbations in x due to measurement errors are described by

x + Ax = (R + AR) cos (0 + AI).

After expanding the cosine term we have:

(R + AR) cos (0 + A6, - R cos e cos A9 - R sin 0 sin A9+

AR cos 0 cos AG - AR sin 0 sin 40,

Since AO is small we will assume cos AO = 1 also since AG is small we assume
sin A- = AG and finally we assume AG AR 0 . So we now have:

(R + AR) cos (9 + A&) = R cos e + AR cos 0- RAG sin 0.

Recalling that x- RcosG we have

Ax - AR cos - R A0si n.
By a similar argument it can be shown that

Ay = A R sin 0 + RAO cos 1,
Note taking partials of both the x and y values results in the same set of equations, and
thus those terms we have ignored correspond to higher order differentials, We will
assume the measurement errors have the following properties

E (AR) w 0

E(AG) = 0

E (AR2) a 2R (2)

E (AG2) a 2 e
E (AR AO) - 0.

Perturbations of x and y, can be expressed in terms of measured quantities as

Ax = AR cos G -A0 R sin G

Ay = AR sin e + AO R cos 0

(Ax)2 - (AR)2 cos2 0 + (AO)2 R sin2 O - 2 AR AO R sin 0 cose (3)

(Ay)2 - (AR)2 sin2 e + (Ae)2 R' cos2 0 + 2 AR AG R sine cos 9
6x Ay - AR2 sin 0 cos 0 -AG R2 sin e cos 0 - AR R sin2 9 + AR A9 R cos20

Combining Equations 2 and 3, we get the following expressions for the variance and
covariance of the target location.

E(Ax) - 0
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E (Ay) - 0

E (A)?) w oR cos' + o% R' sine (4)

E (,&y) -m Ai e + CO R 0 2oSI e

E (,,y) - .5 (oRsin 2 02e- Rý sin2e)

These equations describe the error matrix for the system in terms of the XY coordi-
nate system. In matrix notation the covariance matrix of the estimated position would
be

(•AXY) E (=y2) J aor a 2 •Y

By rotating the coordinates through the angle a defined by

tan"1 2a 2E(AxAy)
E (,&x).- E (,y2)

we decouple the system and can determine the major and minor axis. (This is derived
in Appendix A).

From Appendix A we have

Major axis m I E (,&x2) + E (Ay2) + ((E (,&x2 ) ., E (Ay) 2)2 + 4 E (A&x Ay)2)1/2}

(5)

Minor axis = E (&X2) + E (&y2) _ ((E (&x2) - E (Ay) 2)2 + 4 E (&x Ay)2)1/2}

The following equalities were used to rewrite Equation 5

E (x2) + E (Ay) R sin20 + Ve R2 cos2e + a 2RcOs2 e+ eR2 sin 20

R(COS2 2 + sin2e) + ae R2 (cos2 e+ sin2 0)

vR+ oR2
E (Ax2)- E ( ay2. •R (COs2 Ge- sinz e) + oý. R2 (sin2 e -COS2 8)

2 2 R Cos 2 2- 2e R 2 2e

E(Ax Ay) .5a a sin 2 G- 2o8 R2 sin 2 e

Thus the major axis and minor axis are defined by
12 (( a2 + R 20'2 ) ;;t:'2 + ao% R 2)2 COs2 2 e + (WR -"oeR 2)2 sin 2 2 e) 1/2)

2
1 2 2 2 2 22-1R+ Roe (R -R ae))
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Thp final siyiilification of the above equation results in principle components of
either a R and R a ,. In the case of uncorrelated measurment errors, the axis describ-
ing the covariance structure are directly related to the measurement errors.

For the two dimensional case, performance can be discussed in terms of x and y
or in terms of principle components. Although the ideas are the same in three dimen-
sions the relationships are more complex and it is difficult to give a purely tri-
gonometric explanation,
3. XYZ Covarlance Model

In three dimensions a covariance model can be derived from range, azimuth
angle, and elevation measurements, 'The elevation angle 8 is measured from the posi.
tive z axis and the azimuth angle, 4 is measured from the x axis toward the positive y
axis, Using the same simplification arguments as for the XY Covariance Model the
following set of measurement error transformation equations is obtained.

Ax = AR sin 0 cos + AOR cos e cos - AO R sin e sin

Ay - AR sin e sin • + AGR cos e sin 0 + AO R sin 0 cos •

Az - AR cos O- AO Rsin G

From these equations the covariance model can be found, the quantities of interest
are as follows,

C2 "'F2R sin2 9 COS 2 + or,20 R2 Cost2 e osS2 0 + or2 R' sin2 8 sin2
47,2,Y =, 2 R' SinS2 o Sjn2 + a,2 0 RI Cos2 e sin2 0 + 00 R 2 sin2 a cos 2

2z " r 2 2 2 2k2 Sin2 e

XY a a SR sin2 0 sin , cos 0 + o R2 ct 2 cos2 O sin R cos or 2n R2 sin2 0 sin 0 cos

2XZ W 2 sine cos o cos o- 2o R2 sin 2 cos 2 cos

UYz " a 2R sin G cos s .2 Rssin -,2R2 cos e sin

By finding the eigenvalues and eigenvectors associated with this matrix, the principle
components and orientation can be found.

4. Model Validation Effort
Both the XY and the XYZ models were compared with simulation data to verify

their performance, Using a Gaussian random number generator, errors for range and

azimuth or for range, azimuth, and elevation were generated. These errors wereadded to the true values and then the position was calculated from the corrupted
values. Using ten thousand such points, the covariance of the target position was cal-
culated and then compared to the covariance predicted by the model, The code

designed to perform the simulation is included as Appendix B.
As a first test, the determinants were compared to see if they were In agreement.

A test based on the asymptotic distribution of the sample covariance was used for this.
It is

(det(s).)
Vii( !---I1)

det(E)
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is distributed as N(0,2p)

where
p is the dimension of the matrix
n is the degrees of freedom

In this case, an acceptance based on a determinant is not conclusive. These tests have
no sensitivity to the orientation of the covariance structure, and will not detect certain
differences in the magnitude of the major components of the matrix, For example, a
diagonal matrix with components (1,1) has the same determinant as the diagonal
matrix with components (.1, 10) cr the matrtx with row one elements (5, 3) and row
two elements (3, 2).

The statistical properties of a covariance structure are described by the Wishart
distribution. The use of this 4i~tribution in the three dimensional case leads to six
independent tests. Each one checking a separate component of the covariance matrix.
Note that the off-diagonal terms are based on estimates of the diagonal terms and
thus have more uncertainty associated with them, The procedure used was as follows:

1. Calculate the error structure from the model.
2. Calculate the error structure from the simulated data.
3, Find the normalizing transformation based on the model,
4. Apply this to the result of step 2.
5. Test the resulting matrix to see if it is statistically equivalent to the
identity matrix.

In each of the cases investigated the model and the simulated data produced covari-
ance structures that were statistically the same,
S. AoA Errors

The two models included are based entirely on thermal noise and should be used
as the best case situations. When additional sources of error are modeled it is usually
correct to take their root mean square with the error due to thermal noise. Dr. Alex-
ander in (2) gives the following two equations for relating electronic parameters to oa,

For pulsed AoA processing the thermal noise of a phase interferometer is given
by

(360/2fl)C
2 II f d cos e 4 (S/N) 1TG0

For an amplitude monopulse the thermal noise is
25.4eB

O'th S=(S/NierG)1/2

where,
c is the propagation velocity (M/S)
f is the RF carrier (Hz)
d is the spacing between the receiving antennas.
OB is the antenna half power beam width (deg).
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S/NINTG is the integrator output of signal to noise ratio.
6. Range Errors

Errors in range depend on the ability to measure the time of arrival of a given
pulse. The range error is ar - C/2 ot where at is the time error. The time error is
dependent on pulse type, the followihg are suggested by Skolnik(3):
For a rectangular pulse

1/2
Ort where r is the pulse width

4(T E/No 0 is the bandwidth

E is the received signal energy

No is the noise per unit bandwidth

For a trapezoidal pulse

T2 - 3T1T T1/T
at 6 E[ N T2 is the rise and fall time of the pulse

T1 is the direction of the top of the pulse

For a triangular pulse
2T2

2 0 -(2 B/No)"/2

V1.524(2

rer a Gaussian pulse of the form s (t) - exp (- 1.384)
r2

1.18
't a r P (2 E/No)1/2

sin (,r 3 r")
If the pulse has the form

7r/3r
then

o%(t-

ir / (2 E/N0 )1/2

Continuous Wave Error
C4 7r A f (2 E/No)1/ 2

where A f is the difference between the two frequencies.
The specific electronic model will vary depending on the method used to extract
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information from the signal. The models included above only represent some of the
common techniques. The important thing is that they relate specific electronic or
geometric parameters to the measurement errors associated with either range or
angle of arrival.
7. Analysis Method

In using these models to analyze the performance of a system, the following steps
must be taken.
1. Choose a AoA error model and assign values to the parameter.
2. Choose a range error model and assign values to the parameters.
3. Use the range and AoA errors as input to the XYZ location model.

By following this procedure at a number of different points a system's perfor-
mance can be presented as a function of target location.

8. Conclusion
The models presented herein can be used to evaluate the performance of many

range - angle sensor systems, The performance can be based on specific electronic
parameters such as frequency or pulse shape or on more general specifications such as
three degree angle with five percent range errors, This work could be continued by
designing a software package that includes the selection of the possible options.

This application is typical of the error analysis approach used in many engineer-
ing studies. In this case, the extra step of checking the statistical validity of the model
was included, The dominant feature of this approach to system analysis is to start with
the measurement errors and follow them as they propagate through the system and
degrade the ideal system performance.
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APPENDIX A
We wish to find the angle a of rotation in the coordinate system to decouple the

system.

S= ux cos a + Ay sin a

Ay w -Axsin a + Ay cos a

In terms of the new coordinate system we have

E (Ax) a 0

E (Ay) = 0

E(Ax) - E (&X2) Cos 2 a + 2 E (x) (y) sin a cos a + E (y 2)sin' a

w E (tx 2) +E (Ay2 ) -E (Ax 2) s ot -E(Ay S2)csa
+ 2 E (Ax Ay) sin a cos a

Recall that
1

sina cos a sin 2 a
2

sin2au 1- cos 2a

2
2a + cos2aCOS a -

2
then

E (&X2) ( ( &x2) + (Ay)) + [E (Ax2 -E (ycos2 2a
2 2

+ E (,&x Ay) sin 2 a

Similarly it can be shown that

E (,&y2) 0 1 [E (Ax2) + E (Ay2)] - 1 (E (Ay 2) - E (Ay2)) cos 2 a
2 2

- E (Ax Ay) sin 2 a

E (Ax &y) - - E (Ax2) sin a cos a + E (Ax Ay) (cos2 a- sin2 a)

+ E (Ay2) sin a cos a

. ±[E (Ay2). E (&x2)] sin2a + E (Ax Ay) cos 2a
2

The covariance term will be zero if

tan2a4 - 2E(AxAy)

((E,& 42 E (Ay2)



Note that for this angle

sina2 E (Ax Ay)

(4 E (Ax Ay)2 + (E (Ax2 - ( y2)2) 1/2

cos2a w - (A,.(Ay&)2O 2a" ...
(4 E (AX Ay)2 + (E (AX2) E(,y 2))2)112

Using these relations it can be shown that the major and minor axis are defined by

1/2 (E (Ax) + E (Ay) ± (E (Ax2) - (Ay2) + 4 E (Ax ,y) 2)1/2)
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APPENDIX B

#Include <math.h>
#include "ranvar.h"
#include "stat.h"

main()

float range,r,r sd~rvar,r sq;
float theta~th,theta sd,threta var;
float psi,p~psi sd~pita
float x,y,zýxsum~ys.um,zsumnxvaruyyar,z var;
float xsq~ysqnzq~xy~xyz;
float r slm,th sim,psi Sim;
float srnth,costh,sinpsrcospsl,sin2th,cos2psl,cos2th,sln2psl;
float coy xyocov cz~cov~yz;
float xc2mod~y2 mod,z2 mod~xy mod,xz mod,yz-Mod;
float data det,mrodel d7t~minus,pluS,z te~st,prob;

int 1,n~seed;

/* initialize the variables for this run
range a 50;
r sdm.O5*rage; /* five percent range/
r'varr-rsdorsd;
r squrange~range;
t~eta a M PJ/4;
theta sdZS*2M P1/360; /"five, degree error elevation/
theta var -theta sd~theta ad;
psi - M1 P1/4;
psi sd Z5*2*M P1/360; /* five degree error azimuth*/
psi vat - psi sd*psi ad;

n a 10000; /* number of replications 0/
seed w 23719; /random number seed/

xsq -0;
ysq -0;
zaq -0;
x suni-0;
y sum -0;
xy -0;
xz -0;
yz -0;

for (Ilw0;1< n;1i+ +)
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/y rjauss, Is a gaussian random number generator
the first two sections find the measured value
and calculate the position

th - theta+ theta sdrvjauss(seed);
r -range + rsd~rvgauss(seed);
p - psi + psi~sdrvjgauss(seed);

z.r~cos(th);
x-r~sin(th)ocos(p);
ymr~sin(th)*sln(p);

x sum+ Mx;
ysIum+ my;
zsBumn+ 0 Z;

xsq+ -x~x;
ysq+ wy~y;
zsq+ nz~z;
xy+ Ox"y;
xz+ -x~z;
yz+ -YOZ;
) / *end of replication loop ~
xx.x sum/n;
y y.ysum/n;
z z"um/n;

/the following values are the covarlance, elements based on
the simulations data

x -var -(xsq-x~x sum)/(n- 1);
yvair -(ysq-ymy sum)/(i- 1);
z vtr -(zsq-z~z sum)/(n- 1);
covjcy w (xy-x*y sum)/(n. 1);
cov-x .:(xz-x~z suim)/(n-1);
cov~yz (yz-y~jzsum)/(n- 1);

/0 the next section uses the model to find the predicted covariance
structure

slnth a sin(theta);
sin2th -sinth~sinth;
costh -cos(theta);
cos2i~h -costh~costh;
sinpsl - sln(psi);
sln2psi -slnpsi~slnpsl;
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cospsi = cos(psi);
cos2psi = cospsi~ cospsi;

x2 mod-r rvar*sin2th*cos2psi;
x27modi. - *theta var~r sq~cos2th~cos2psi;
,..2-mod+ =psivar~rsq~sin2th~sin2psi;

y2_mod = r -var* sin2th *sin2psi + theta var * rsq* tzs2th*s in2.psi;
y2_,od + = psi vYar~r sq*;n2th~cos2psi;

z2-mod~r-var~cos2th +theta var~r sq~sin2th;

xym;od =r varmsin2th'cospsi~sinpsi + theta var~ rsq~cos2th*(;ospsi~sinpsi;
xy~mod- - psi var~r sq~sin2th~cospsi~sinpsi;r

xz mod -r var5 sinth~costh~cospsi-theta var 5r sq~sinth costh 'cospsi;
yz mo-i r var~sinth5 uosth~sInpsI-theta var~r sq~sinth costh~sinpsi;

/*5perform determinate test

plus - x ,var~y varz -var;
plus + - coy xy~cov~yz~cov xz*2;
minus - cov xz~cov~xz~yvar;
minus + = coxy xyCcv xy~z -var;
minus + = covjyz~covjyz~xvar;
data det =plus-minus;

plus = x2 mod~y2,mod~z2 mod;
plus + = 25xy.mod~xz mod-yz mod;
minus = xy~mod~xy.rnod-Iz2 -mod;
minus + = y2, mod'xz -mod'xz mod;
minus + = x2 modmyz rnod~yz mod;
model-det = plIus-minus;

z test = sqrt(n-1) *(data det/model-det - 1);
z-test /- sqrt(2*3);
prob = cnf(z,_test);

printf('tO);
printf( 9 ***""---------------.........................
printf(" Range : %/f theta : %1,f psi : %t",ange, theta,psi);
printf(COd(range) = %f sd(theta) = %f sd(psi) = %f",r sd,theta id,psi sd);
prjfltf(I"Oimulated Var(X) = %f model value was %ft,xý var,x2Jmodl);
printf("Oimulated Var(Y) = %f model value was %f',y var,y2_mod);
printf('tOimulated Var(Z) = %f model value was %C',z-var,z2 mod);
printf("Oimulated Cov(XY) = %f model value was %'f",cov__xy,xy mod);
printf("Oimulated Cov(XZ) = %f mode', value was %f',cov xz,xz-mod);
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¾. Mr . ...........

pritf('Oimulated Cov('YZ) -%f model value was %Yf',cov yz~yzmod);
prlntf ("0 value of O/of with prdbibllity of %fZ-test,prob);
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RELIABILITY DESIGN PROCEDURES FOR FLEXIBLE PAVEMENTS

Yu T. Chou

Research Civil Engineer, Pavement Systems Division
Geotechnical Laboratory

US Army Engineer Waterways Experiment Station
Vicksburg, MS 39180-6199

ABSTRACT: A procedure has been developed to analyze lay-

ered elastic flexible pavement systems in terms of reli-

ability. A computer program RELIBISA was prepared to

carry out the computations. The Rosenblueth's method,

instead of the conventional Taylor series expansion, is

used to estimate the expected value and variance of the

strains (dependent parameters) based on. the input mean

values of independent parameters, i.e., aircraft load,

layer thicknesses, and material moduli. The relationships

between the reliability level and the allowable strain

repetition of the designed system, which is established

with results computed using RELIBISA, provide a decision-

making tool for engineers to design pavements at a desired

reliability level. The design can be optimized by select-

ing thicknesses of the bituminous concrete and the base

layer so that the pavement fails in fatigue cracking of
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the bitumlnous concrete and in subgrade at nearly the same

traffic level for a given reliability level. The

reliability-strain repetition curves have a steeper slope

with the bituminous concrete strain failure criterion than

with the subgrade strain failure criterion. This steep-

ness indicates that for flexible pavements designed using

the Corps of Engineer's failure criteria, the design has a

greater degree of uncertainty in preventing subgrade fail-

ure than fatigue crecking of the bituminous concrete sur-

face course. However, this may not be true in real cases

because the bituminous concrete failure criteria are

determined baied on controlled laboratory test data which

do not consider the uncertainties existing in laboratory-

to-field correlations. The actual performance of the

pavement with respect to fatigue cracking •ill be more

uncertain than is cor.!lidered in the design. The sig-

nificance of the failure criteria employed in the analysis

on the derived conclusions is discussed and illustrated.

it was found that the performance of a conventional

flexible pavement is sensitive, in descending order, to

variations of gear load P , the thickness of the gran-

ular bass h 2 , the subgrade modulus E3 , the thickness

and modulus of the bituminous concrete surface course

h , and El , respectively, for the subgradi strain fail-,

ure criterion, and to variations of P , h, qEl , E2.

h , and E3 for the bituminous concrete strain failure
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criteria. Although pavement performance is more sensitive

to the variation of layer thickness than to variation of

the elastic modulus of the layer, the actual variation of

material moduli in the field is known to be much larger

than the variation of layer thickness. Strict control

during construction is recoumended to reduce the degree of

material variabllity: and thus to lessen the degree of

uncertainty and to increase the confidence level of the

designed pavement.

INTRODUCTION

The design of flexible airfield pavements in the US Army Corps of

EnSineers (USACE) is currently based on two methods: (1) the Cali-

fornia Bearing Ratio (CBR) equation that is empirical in nature and

yields a design thickness for a given design condition, and (2) the

multilayered elastic method that is analyti£ tl in nature and yields

stresses, strains, and deflections in the pavement system for a par-

ticular loading condition and pavement geometry which in turn are com-

pared with established failure criteria to determine the performance

Qf the given pavement. Both design approaches are deterministic,

i.e., a unique pavement system is designed for the specific set of

input variables necessary to solve the problem. The input variables

are unique. £n the CBR method, a pavement thickness is determined

from given valuea of Pifbgtade CBR, gear load and configuration, tire

251



contact area, and design coverage level. The effect of material

variability on pavement performance is considered In the designer 6'

selection of the sublrade CDR value, and the design safety factor in

Implicitly contained vithin construction specifications such as

compaction requirements.

A design methodology that has the capability of considering

design parameter variability in the USACE design procedure for flexi-

ble airfield pavements using the elastic layered method is presented

in this paper. The design procedure is expressed In probabilistic and

reliability terms, i.e., the design pavement thicknesses at different

performance levels are computed for a range of reliability levels.

The designer can select the pavement thickness and in some cases

develop an overlay design scheme based on the desired reliabllity

level. The design procedure is incorporated in a computer program.

By using the procedure, the partial effect of the variability of each

design parameter on pavement performance can also be investigated, and

its effects on the final design can be quantified. Emphasia can be

placed on the crucial parameters to be tightly controlled in the con-

struction phases and/or the crucial loading parameters dictated by the

intended use of the pavement.

PREVIOUS WORKS

Witozak, Uzan, and Johnson (1) of the University of Maryland,

under a contract from the Waterways Experiment Station (WES), devel-

oped design methodologies for rigid airfield pavements In terms of
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probability and reliability. The work involved design procedures

based on the Westergaard free edge stress slab theory (2) and the

,,multilayer elastic theory (3). Taylor series expansion (4) was used

in the probabilistic analysis. The development of probabilistic and

reliability design methodologies for flexible airfield pavements has

been conducted at WES. Effort was first conducted on the CB3 desilg

equation (5). The work Is briefly described in the next paragraph.

The original and the new CBR equation for flexible airfield pave-

mente are shown below as Equations 1 and 2, respectively.

t P A :
pI= - (1)

t 0,a 0.0481 - 1.1562 (log CBR ,

I CBR - A/ CBR - A3
- 0.6414 log P 0 .473( log P (2)

where

t - pavement thickness, in.

a - a traffic factor

P - single-wheel load (or the equivalent single-wheel

load (ESWL) in the case of the multiple-wheel loads), lb

CBR - California Bearing Ratio of the subgrade soil

A - tire contact area, square inches
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Equation I was formulated in the 1950's, and Equation 2 was formulated

in the early 1970's based on additional test data (6). The design

,!,parameters considered were the load P (or the ESWL), the subgrade

CBR, the tire contact area A , and the pavement total thickness h

The expected value and the variance of the dependent variable traffic

fictor a were estimated using the Taylor eeries expansion and the

Rosenblueth method (7). Differences in computed results between the

two methods were found to be small, although the derivation of the

expressions for Taylor series expansion is very complicated. A com-

puter program was developed to estimate the reliability of the

designed pavement system based on known variabilities of design param-

eters. Results of the reliability analysis indicate that prediction

of pavement performance is most influenced by variations of pavement

total thickness and is least influenced by variations of tire contact

area A * The effects of variations of wheel load P and subgrade CBR

are identical. The relative sensitivity normalised to thickness t

for parameters t s CBR , P , and A , in general cases, are

approximately 1, 0.34, 0.34, and 0.01, respectively. It was thus con-

cluded that in the future analysis of pavements involving input param-

eter variabilities, the effect of the variation of wheel contact area

may be neglected. It was also recommended that strict quality control

be exercised during construction to reduce variations of pavement

thickness and subgrade CBR9 and that the Rosenblueth method (7) be

used because of its simplicity and accuracy in the probabilistic

analysis of layered elastic system.
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PROBABILISTIC AND RELIABILITY APPROACH

In analyzing a pavement structure in probabilistic and reli-

ability toerm, the expected value and variance of a function (such as

the computed stresses, strain, or load repetition) should first be

determined, and the reliability of the design can then be evaluated.

The Taylor series expansion (4) and the Rosenbluoth (7) procedure are

generally used. These methods are presented below.

Taylor Series Expansion, The Taylor formula or the expansion of a

function f(x) 0which has N continuous derivatives, about the func-

tion's mean 1A, is

M(~) - M(1) + f'(1t)x .. Vi) +L f (0 (x 2

+ ... higher order terms + remainder (3)

Since the expected value of (x V I) is zero and the expected value of

(X V) .)2 is the variance of x ,i.e., ENx - Wi - 0 and

E (x - ) 2 . a the expected value of fWx becomes

E[f(x)J - f(p~) + I~ f"it)Q (4)

The variance of a function f(x) is

V~f~x) [f E(F x)] -E~f(x)]
2  5
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and

2 2 () 204

V If(W)I If,(0)1 ex" f ['(())ax

In Equations 4 and 6, if the random variables can be assumed

nomally distributed, the second-order terms may be neglected.

Equation 6 also assumes that the variables are uncorrelated.

Rosenblueth Method--quatione 4 and 6 are obtained ftom the truncated

Taylor series expansion of the function about the expectations of the

random variables, This method rtequires the existence and continuity

of the first and second derivatives of the function. Rosenblueth

used the point estimates of the function, and the expressions for the

expected value aret

N .N +NEct I -y + ~- ) for one variable (7)

RI N MI cl.1+ + c + eN + }N for two variables (8)

N 1 N_ _

+ CN+ + aN_.) for three variables (9)
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N 1 + N N N N

E 4- ( I + + c++ -+ N+ -+ + N+ +

+ CN +CN + N N
+ +.. 6+--+ €+---~~ + €----+ -.-

" .+ _N + N for four variables

EtSTMI 1~ N+44 + *so + C or M variables (11)

Note that the number of total terms to calculate the expected value of

a function c (strain computed using the elastic layered BISAR pro-

gram (8)) which has H variables in 2M , and N has a value of

either 1 or 2 as shown in Equation 5, i.e., c is represented by

f(x) , and N is the power of the function. c+ and c. in Equa-

tion 7 are the strain values evaluated at the mean plus one standard

deviation of the variable and the mean minus one standard deviation of

the variable, respectively. c+. in Equation 8 is the strain value

evaluated at the mean plus one standard deviation of the first vari-

able and the mean minus one standard deviation of the second variable.

Similar reasoning holds true for the other terms.

To reduce the number of variables in elastic layered method com-

putations, variations of Poisson's ratio of pavement materials are

neglected, as it has insignificant effect on pavement response to

loads. The variation of tire contact area can also be neglected in

this computation, based on the conclusion of the previous study of CBR

design method for airnield pavements (5). To illustrate the use of

the Rosenbluth method, the computation of the expected value of the
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strain e for a two-layer flexible pavement is presented. The inde-

pendent parameters considered but uncertain are the wheel load P

the elastic modulus and thickness of the top layer E1 and h1

respectively, and the elastic modulus of the subgrade E2 . Other

parameters (wheal contact area and Poisson's ratio) are precisely

known, i.e., the standard deviations are zero. For a four-parameter

problem, Equation 10 Is used to determine thp expected value of the

strain c . Assuming that the standard deviations of the parameters

are 'P, 0 ' ,E2 and Ih1 and that the parameters are arranged

in the order of P , E1 , E2 , and h, (i.e., the order of the

symbols 1++1 # All- , ", etc.), each term in Equation 10 is computed

using the BISAR program. Once the mean values for parameters P o I1

0 12 ' and fi and their standard deviations 0. , 0El 0 oE2 # and

ahl are specified, the expected value of € can be determined from

Equation 10, and the variance of c is computed using Equation 5.

Reliability Analysis--as soon as the expected value and the variance

of a function (such as the strain values computed in an elastic

layered pavement system or the 0 factor in Equation 2 representing

the traffic performance level) are determined, the reliability level

of the function can be computed. Reliability in defined as the proba-

bility that the pavement system will perform its intended function

over its design life (or time) and under the conditions (or environ-

ment) encountered duzing operation (9).
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Two failure criteria are used (10).. The criteria for allowable

strain repetitions N for the bituminous concrete is mathematically

,expressed as

N Allovable(AC) - 10"A (12)

where

A- 5 Los 1 0 t + 2.665 Logl 0 ( + 0,392

€ =maximum horisontal tensile strain at the bottom of the

asphaltic concrete layer

"EAC - elastic modulus of the asphaltic concrete, psi

The criteria for allowable strain repetition N for the subgrads is

expressed as

S-200,00 = (13
NAlloweble (subgrade) 20. ub0 (13)

where

A - 0.000247 + 0.000245 Logl0 (Esubs)

E sub " subgrads modulus, psi

C subg - subgrads strain, dimensionless

B - 0.0658 (E subg)0.559
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The bituminous concrete strain criteria in Equation 12 are

derived based on laboratory fatigue data on the breaking stress and

strain of bituminous base-course materials with about 5 percent air

voids. The subgrade strain criteria in Equation 13 are derived based

on the full-sale accelerated traffic test data.

The strain value 9 for each term of the Rosenblueth expression

(Equations 7 to 11) is computed using the BSAR program. The perfor-

mance (strain repetitions to failure) of the pavement may be estimated

from the failure criteria shown in the equations for two different

failure modes.

With the strain value € assumed normally distributed, the

number of allowable strain repetitions corresponding to c + cut (or

e[1 + C • CV(C)]) can be determined from Equations 12 and 13# and the

probability of c 9 e[l + C ' OV(s)] is taken from the normal

distribution. W(O4 io the coefficient of variation of c , which is

the ratio of the standard deviation of c to a mean of c , (i.e.,

a /1), and C is the selected number varying from -3 to +3. The

selection of C values less than -3 and greater than +3 are not

necessary because the areas under a normal distribution curve beyond

-3 and +3 standard deviations are negligible. The computations of the

reliabilities, and allowable strain repetitions are carried out in the

RELIBISA Computer program. The program logic of RELIBISA is presented

in Reference 10. Although the program is prepared based on failure

criteria presented in Equations 12 and 13, other failure criteria such
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as those for highway pavements and other design conditions for air-

field pavements can also be used in the programs.

ANALYSIS OF THE FLEXIBLE PAVEMENT

In the analysis of an airfield pavement In terms of probability

and reliability, the RELIBISA computer program is used to calculate

the allowable load repetitions for a given pavement section for

various reliability levels. The input parameter variations are CV

(coefficient of variations) defined to be the ratio of the standard

deviation to the mean value of the parameter. For instance, if the

mean gear load is 178,000 lb and the CV of the gear load is assumed

to be 10 percent, the standard deviation of the gear load will be

17,800 lb, i.e., 68.3 percent of the time the gear load would lie

betwesu 160,200 and 195,800 lb (which is plus and minus one standard

deviation for a normally-distributed variate).

Relationships betwcen reliability level and the corresponding

allowable load repetitioas are establithed for many pavement sections

with various input parameter variabilities. The reliability of the

Corps of Engineers flexible pavement design model is 0.5, (.11), but

the design method has higher reliability value because of the design

safety factor implicitly contained within construction specification

such as compaction requl.rements and the selection of subgrade CBR

value.
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Elastic Modiili of Pavement Layers--for conventional flexible pave-

ments, the critical period during the year is the colder winter months

.for the surface bituminous layer as the bituminous concrete becomes

more brittle and the warmer summer months for the subgrade as the our-

face layer becomes lees stiffer. Accordingly, a modulus value of

.1,000,000 psi and a Poisson's ratio of 0.3 are used in the bituminous

concrete strain criterion (winter), and a modulus value of 200,000 psi

and a Poisson's ratio of 0.5 are used in the subgrade strain criterion

(summer). The modulus value of the granular base material is assumed

to be 55,000 and 32,000 psi for the bituminous concrete strain crite-

rion and the subsrade otrain criterion, respectively. The selection

of these values is explained in Reference 10.

Analysis of a Three-layer Flexible Pavement--a Sear assembly load of

178,000-lb B-747 aircraft was used in the computation. The aircraft

has twin-tandem gear assemblies and the wheals are spaced 44 by 58 in.

Each wheel load is 44,530-lb. and the tire contact pressure Is

182 psi.

Two series of computations were made using the RELIBISA computer

program to analyze flexible airfield pavement parameters in terms of

probability and reliability. In the first series, the thickness of

the bituminous concrete surface course h1  is held 9 in., and a range

of granular base layer h 2  is assumed. In the other series, the

thickness of the base layer h 2  is held constant 30 in., and a range

of surface layer h 1  is assumed. In both computations, the CV of
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the input parameters, gear load P , moduli of the bituminous concrete

El I the granular base course E2 and the subgrade E3 , and the

thicknesses of the surface course hI1 and the base course h 2 were

assumed to be 0.1, 0.15, 0.2, 0.25, 0.1, and 0.15, respectively. The

computed results are plotted in Figures 1 and 2 for the subgrade

strain criterion (summer temperatures) and the bituminous concrete

strain criterion (winter temperatures), respectively.

The curves shown in Figure I for the subgrade strain criterion

are generally parallel to each other, except in the area where the

reliability is close to one and zero. For a given bituminous concrete

thickness h, , increasing the thicknesws of granular layer h 2 can

increase the allowable strain repetition of the pavement. This is

also trite if this procedure is reversed. Figure 2 shows that fo& the

bituminous concrete strain criterion, the performance of the pavement

can certainly be improved with the inurease of the thickness of the

bituminous concrete surface layer hI (for a given thickness of the

granular layer). This is also true if the thickness of the surface

layer hI is held a constant and the thickness of the granular layer

h2 is varied, but the benefit reduces rapidly for very thick granular

layer, which is demonstrated by the closely spaced curves at greater

h 2 values presented in the lower part of Figure 2. The significance

of the curves is that for a given pavement thickness, the allowable

strain repetition to failure varies with its reliability level. For

a 9-in. bituminous concrete surface layer h1  and a 20-in. granular

layer, the allowable strain repetition against subgrade failure

(Figure 1) at a reliability level of 0.5 is 8,500 strain repetitions,
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i.e., the chance of success of the design of this pavement to sustain

8,500 strain repetitions of the B-747 aircraft load before failure is

.S0 percent. Figure 1 shows that the chance of success can be

increased to 80 percent if the design strain repetition is reduced to

1,000. If the 8,500 repetitions are considered as a 20-year design

period and the 1,000 repetitions are thus equivalent to 2.4 years,

there is an 80'percent chance that the pavement can last 2.4 years

without failure (with routine maintenance), but there is only a

50 percent chance that the pavement can last a full 20-year design

period.

It is to be noted that the flatter the slope of the curves in

Figures I and 2, the greater are the uncertainties Involved in the

design. However, the shapes of the curves are influenced by the

failure criteria (Equations 12 and 13) employed in the computations.

This will be discussed later in this paper. The curves in Figure 2

for the bituminous concrete strain criterion have steeper slopes than

those in Figure 1 for the subgrade strain criterion, indicating that,

using the Corps of Engineers' failure criteria, the designed pavement

may have a greater degree of uncertainty in preventing subgrade fail-

ure than in preventing fatigue cracking of bituminous concrete surface

Course.

For a given design strain repetition, the relationships between

reliability and pavement thickness can also be obtained from Figures 1

and 2. Engineers can choose the pavement thickness suitable for the

selected reliability level of the design. This point can beet be
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demonstrated from the curves presented in Figure 3 which is plotted

from Figures 1 and 2. Figure 3 shows the relationships between the

strain repetition and layer thicknesses h1 and h2 at different

reliability levels. The relationships in Figure 3 can be helpful to

designers in selecting the allowable strain repetitions of a given

pavement section for a desired reliability level ortto vary the layer

thicknesses h1  and h2 that will be suitable for a specific design

performance level of the pavement for a given reliability level. The

slopes of the curves indicate the rate of change of allowable strain

repetition due to change of layer thicknesses hI or h2 . Obviously

the steeper the slope of the curve, the better the design for that

particular failure mode would be.

The curves in Figure 3b in the region where the granular layer

thickness h2  is less than 30 in. have generally the same slope as

those In Figure 3a. Since the unit cost of granular base course is

much less than the bituminous concrete surface course, it is

economically more beneficial to increase the thickness of the granular

base course (h 2 ) to prevent the pavement from subgrade failure. This

is logical from the structural viewpoint, as the base course is placed

directly on the subgrade. However, the slopes in Figure 3b drop

slightly at greater h 2  thicknesses, indicating the significance of

granular layer thickness increase also drops slightly at greater h2

,thickness.
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Figures 3c and 3d show curves plotted for the bituminous concrete

strain criterion. The steep slopes in Figure 3c indicate the struc-

tural benefit of increading bituminous concrete thickness to prevent

the puvement from failure of surface cracking. The flatter slopes of

the curves in Figure 3d indicate relatively little significance of

base course support in a flexible pavement in the limitation of

fatique cracking. of the surface course. Figure 3d also shows that the

significance of base course reduces rapidly as its thickness continues

to increase.

The curves presented in Figure 3 provide engineers with a tool to

vary the layer thicknesses (h 1 or h 2 ) to be suitable for the spe-

cific design performance level of the pavement and for a given reli-

ability level of the design. An optimum design may be made to select

the thicknesses of the bituminous concrete and the base layers so that

the pavement fails in fatigue cracking and in subgrade at nearly the

same traffic level for the same reliability level.

The conclusions drawn from Figures 1 to 3 are based on a subsrade

modulus of 9,000 psi. Questions arise as to whether a stronger sub-

grade support of the pavement would reverse the observed trend. Com-

putations similar to those presented in Figures I and 2 were made for

a subgrade modulus of 25,000 psi. It was found that the relationships

between the reliability and the strain repetition .re very similar to

those shown in Figurese I and 2, except that the curves shift to higher

strain repetition values because of stronger subgrade support. This

is more predominate in the subgrade strain failure mode than in the
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bituminous concrete failure mode because stronger subgrade support has

a greater effect on pavement performance with respect to subsrade

-failure than with respect to bituminous concrete failure.

Figures 1 and 2 show the relationships between the reliability

and strain repetition for a given set of CV1.. Figure 4 shows results

of the effect of each individual parameter on the performance of flexi-

ble pavements. Computations were made to vary only one parameter each

time while variations of the other five parameters were sero. The

results presented in Figure 4 are for the CVt e of 0.1. The figure

shows that the variabilities of different input parameters have dif-

ferent degree of impact on pavement performance. For both subgrade

and bituminous failure criteria, the pavement performance (allowable

strain repetition) is most sensitive to the variation of the aircraft

load P . F7r the subgrade strain criteria, the pavement performance

is more sensitive to variations of the thickness of the granular base

layer h2  (which is placed directly on the subgrade) and the modulus

of the subgrade K3 * The pavement performance is less sensitive to

the thickness and modulus of the bituminous concrete surface course

hI and EK , respectively, and the modulus of the base course E2

For the bituminous concrete strain crittrion, the pavement performance

is more sensitive to variations of the thickness and modulus of the

bituminous concrete layer h1 and El . respectively, and in less

sensitive to variations of the thickness and modulus of the base layer

h2 and E2 , respectively, and the modulus of the subgrade E3 . It

is interesting to note that the pavement performance in more sensitive

to variationis of layer thickness than the elastic modulus of the layer
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material in both failure criteria, and it is least sensitive to the

variation of modulus of the bituminous concrete surface layer E1  in

the subgrade strain criterion and to the variation of subgrade modulus

S3 in the bituminous concrete strain criterion. Thus, the perfor-

mance of a flexible pavement is sensitive in the descending order, to

variations of P , h2 , *3 , h , E2, and E, in the subsrade

strain criterion, and to variations of P o h 1  El 2 j h2 '

and 33 in the bituminous concrete strain criterion.

The significance of the resulto presented in Figure 4 may also be

explained from another viewpoint by using the values listed in

Table 1. Table I shows the ranges of computed allowable strain reps-

titionu within +1 and -1 standard deviation of the subgrade strain

value for six different cases. In each case, the CV of one param-

eter is equal to 0,1, and the CV'e of the other five parameters are

set at seto. The subgrade strain value computed for the pavements is

0.0009404 in./in. Table 1 shows that the standard deviation of the

subgrade strain is the largest for the load P and Is the smallest

for the modulus of bitumitious concrete surface course El . When only

the variation of the load P is accounted for, there is a 68.3 per-

cent chance (i.e., the area within +1 and -1 standard deviation under

a normal distribution curve) that the predicted pavement performance

falls wichin the range of 56,160 to 479,000 strain repetitions. If

only the variation of the modulus of bituminous concrete El is

accounted for, the predicted performance for the same percent of

chance narrows down to a range from 142,500 to 169,670 strain
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Table 1. Flexible Pavement Performance Variations as Functions of
Variations of Input Parameters (Subgrade Strain

Criterion) Flexible Pavement

Standard
Deviation Strain

Coefficient of Variation of Strain Repetitions, for
S_ -1 E h_3  h1  2 a* C + a. - a C

0.1 0.0 0.0 0.0 0.0 0.0 0.0000940 56,160 479,000

0.0 0.1 0.0 0.0 0.0 0.0 0.0000077 142,500 169,670

0.0 0.0 0.1 0.0 0.0 0.0 0.0000249 117,540 207,120

0.0 0.0 0.0 0.1 0.0 0.0 0.0000618 78,790 321,140

0.0 0.0 0.0 0.0 0.1 0.0 0.0000330 1074580 227,570

0.0 0.0 0.0 0.0 0.0 0.1 0.0000724 70,360 365,940

* The subgrade strain computed for the pavement is 0.0009494 in./in.

repetitions, indicating a smaller variation and thus a design with

less uncertainty.

VARIABILITY OF INPUT PARAMETERS OF FLEXIBLE AIRFIELD

The results presented in Figure 4 are based on the analysis

assuming that the input parameters have the same coefficient of

variation. In reality, some parameters have larger variations than

others. Although the pavement performance is more sensitivq to the

variations of layer thickness than the modulus of the layer, it has

been found that the thickness variations in actual field constructions

are not very large; the average CV's are generally near 10 percent.

(Nevertheless, efforts should be made to reduce pavement thickness

variation during construction as much as possible.) The actual varia-

tions of moduli of layer materials in the field are known to be very
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large. The CV of moduli can be as much as 50 percent or more. Hore

efficient construction methods and equipments should be used, and

,strict compaction and quality controls should be exercised in con-

struction to reduce material modulus variations. The control of load

variation is beyond the jurisdiction of pavement engineers. Since the

variation of aircraft load has a large effect on pavement performance,

the airfield operators should be informed and advised to limit air-

craft overload cases.

SIGNIFICANCE OF FAILURE CRITERIA

All the reliability-strain repetition curves shown in Figures 1

to 4 have steeper slopes for the bituminous concrete strain criterion

than for the subgrade strain criterion. It seems that flexible pave-

ments designed using the Corps of Engineer's failure criteria will

have a greater degree of uncertainty in preveniting subgrade failure

than preventing fatigue cracking of bituminous concrete surface

course. However, this may not be true for pavements in the field. It

is extremely important to point out that the subgrade failure criteria

(Equation 13) are bamed on traffic test data while the bituminous con-

crete strain criteria (Equation 12) are derived based on laboratory

fatigue data. Since failure criteria derived from laboratory tests do

not consider the uncertainties existing in the laboratory-to-field

correlations, the actual performance of the pavement will be more

uncertain than is considered in the design. Even though the slopes of
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the reliability-strain repetition curves are steeper in the bituminous

concrete strain criterion than in the subgrade strain criterion, it is

,not necessarily true that pavements designed using the Corps of Engi-

seer's failure criteria will have lesser degree of uncertainty in pre-

venting fatigue cracking of bituminous concrete surface course than

prsventing subgrado failure. There is a need to incorporate the field

uncertainties into the laboratory determined failure criteria. More

discussion on the significance of failure criteria on the reliability-

strain repetition curves (Figures 1 to 4) is presented in

Reference iM.

CONCLUSIONS

Based on the analysis of RELIBISA computer program which in a

layered elastic pavement design approach in terms of probability and

reliability, the following conclusions can be drawn for flexible air-

field pavement design using the layered elastic method.

The relationships between reliability and strain repetition (such

as Figures I and 2) can be used to design a pnvement in terms of prob-

ability and reliability. For a desired reliability level, the thick-

ness of the bituminous concrete surface course or the thickness of the

granular base can ba varied to agree with the designed strain

repetition, or the allowable strain repetition can be modified for a

given pavem-nt structure.

275



For the subgrade strain failure criterion, equal changes in the

thickness of bituminous concrete surface course or granular base

course result in equal changes in allowable strain. Since the unit

cost of granular layer is lees than the bituminous concrete course, it

is economically beneficial to increase the thickness of the granular

base to prevent the pavement from subgrade failure. The support from

base course has relatively lesser significance in preventing fatigue

cracking of the bituminous concrete surface course than increasing the

thickness of the bituminous concrete layer itself, and the signifi-

cance reduces rapidly as the thickness of the granular base continues

to increase (Figure 3d).

The performance of a flexible pavement is sensitive for the sub-

grade strain criterion to variations of the following input parameters

(in the descending order) the Sear load P , the thickness of the

granular baei h2 , the subgrade modulus E3 , the thickness of the

bituminous concrete surface course h, , the granular base modulus

E2 * and the modulus of the bituminous concrete surface course El

For the bituminous concrete strain criterion pavement performance is

sensitive to variations of P , h1 , E, E2 , h 2 , and E3 *

Although pavement performance is generally more sensitive to the vari-

ation of layer thickness than to that of the elastic modulus of the

layer material, actual variations of layer thickness in the field are

known to be lesser than variations of material moduli.

The results of the reliability analysis are very much influenced

by the nature of the failure criteria employed. There is a need to

276



incorporate the field uncertaintiea into the laboratory determined

failure criteria.

The relationships between reliability and strain repetition

developed for flexible pavements (Figures I to 4) can be used to

optimize the design. The thicknesses of the bituminous concrete and

the Sranular layers can be selected so that the pavement is failed in

fatigue cracking of the bituminous concrete and subgrade failure at

nearly the same traffic level and the same reliability level.
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Rick No•Idheim University of Wisconsin October 1990

Nimble Consultant's Aticles of Advice

Field of 64

Before first visit ar early in consulting relationshiR
1 Learn what you can about the subject matter in client's field.
2 Learn what you can about client and client's group.
3 At the beginning of your relationship with client, agree on expectations; what will be

done, by when, and at what cost.

Particularly during first consulting session
4 Find out what clientes major objective is.
5 Recognize that client will often have difficulty articulating major objective.
6 Find out specifically what data are available, how they were obtained, and what are

their units.
7 Determine relation between particular issue under discussion and overall research goals.
8 Find out about previous studies similar to the one under discussion.
9 Find out what statistical techniques are used in client's field.
10 Learn about the limits and constraints on client's problem.
11 Try to determine what client knows.
12 Try to determine client's view of statistics and statisticians.
13 Formulate goals as precisely as possible.
14 Determine who real decision-maker is.
15 Make client feel comfortable; avoid scolding and excess criticism.
16 Be prepared to spend some time on pleasantries.
17 Reassure a frightened client.
18 Avoid any adversarial relationship with client.
19 Do not let client lead you up the garden path.
20 Do not feel embarrassed when you do not know something.
21 Encourage client to expound on relevant substantive issues.
22 Try to evolve a relationship as collaborative equals.
23 Have a clear understanding of consulting service philosophy.
24 Be careful of the 'five-minute' question.

Preceding Page Blank
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During all consultindsessions
25 Where possible, make client feel like an expert.
26 Rephrase in your own words the major points made by client. (Do this often.)
27 Encourage client to rephrase major points.
28 At end of session, clarify in writing major decisions and subsequent goals for

consultant and client.
29 In suggesting solutions, present options and tradeoffs.
30 Encourage interchange among multiple clients.
31 Listen carefully to the throwaway line.
32 Be aware of body language.
33 Be friendly and patient.
34 Take good notes.
35 Have your homework done for every meeting.
36 Ask lots of questions.
37 Make sure the consulting environment is pleasant.
38 Be careful with client-consultant seating arrangements.
39 Avoid excessive interruption.
40 Avoid excessive lecturing.
41 Avoid appearing too theoretical.
42 Be aware of 'the politics' of a study (if such exists).
43 Make the statistical procedure fit the problem rather than the other way around.
44 Encourage pilot studies.
45 Probe into underlying assumptions.
46 Emphasize exploratory plots; make some during session if appropriate.
47 Tailor your suggestions to the capabilities of the client.
48 Realize a major role of consultant is helping client clarify understanding.
49 Do not hesitate to make general recommendations to general experimental effort.
50 Realize you can always make a contribution.
51 Encourage subsequent visits by client at the earliest possible stage of the project.
52 Visit the client's home turf if possible.

While working on problem under discussion
53 Pay attention to details of design and experiment management.
54 Make sure data and computer output are carefully and continually scrutinized.
55 Examine carefully time-order of data.
56 Think carefully about what is (are) the experimental unit(s).
57 Enumerate sources of error.
58 Dig hard on diagnostics.
59 Dig into literature, when necessary, in statistics or client's field.
60 Find the simplest solution that does the job.
61 Be aware of political reality.
62 Be prepared to make some compromises with the real world.
63 Meet all deadlines; approximate solutions on time usually better than definitive solution

late.64 Make written reports clear with major points emphasized, with lots of plots, and with
minimum of excessive technical detail.
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THE SURVIVAL PROBABILITY FUNCTION OF A TARGET MOVING ALONG A

STRAIGHT LINE IN A RANDOM FIELD OF OBSCURING ELEMENTS

S. Zacks and M. Yadin
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Binghamton, NY 13901

ABSTRACT. A target is moving along a straight line path. Random portions oi the path
might be invisible to the hunter (in shadow). Shooting trials are conducted only along
the visible segments of the path. An algorithm for the numerical determination of the
survival probability of the target is developed. This algorithm is based on the distribution
of shadow length which is also developed.

Keo Words: Lines of sight; vaiibili•y probabilities; distributions of shadows; survival prob-
ability.
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1. INTRODUCTION,

The present study is focused on the problem of determining the survival probability of

a moving target, which is under attack by a hunter. The target (vehicle, tank, etc.) is

moving along a straight line path, which is partially obscured from the hunter by randomly

distributed objects (trees, clouds, terrain objects, etc.). The target can be destroyed by the

hunter only along the visible segments of the path. Visibility contact between the hunter

and the target is needed for To time units for a shooting trial to occur. In any giv en shooting

trial the probability that the target is destroyed is fixed, If the target survivws a shooting

trial, another identical trial may be attempted if continuous visibility for rO time units is

possible. If the target enters an obscured segment of the path, the shooting trials terminate,

until visibility contact is reestablished. Under the above assumptions, if the target has to

cross a visible segment of length L, its survival probability can be approximated by the

negative exponential function exp{ -qL}, for suitably chosen constant q, 0 < q < 00. The

problem is that the number of visible segments on the moving path, between two specified

points PL and Pu, and their lengths are random variables, whose distributions depend

on the characteristics of the random field.

The present study is based-on the model of a randomn Poisson field of obscuring elements.

This model is presented in Section 2. Under the assumptions of this model, it is relatively

Typeset by AMS-ThI
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simple to derive the conditional distribution of the length of a visible segment on the right

hand side (r.h.s.) of a point, Ps, on the path, given that the point Pg is visible. This
distribution is given in Section 3.1. On the other hand, it is more complicated to determine

the distribution of the length of a segment which is obscured (in shadow). In Section 3.2

we present the methodology for determining the distribution of the length of shadows.

This methodology is based on a theory given by Chernoff and Daly (1957). For a given

point P. on the moving path, Chernoff and Daly (C-D) define the functional T(z), which
is the right hand limit of the shadow to the r.h.s. of P., cast by obscuring elements in

the field which intersect the ray R. from the origin 0 through P.. Employing functions

K1(x, y), which are defined in Section 2 and derived explicitly for the standard-uniform
case in the Appendix, we express the cumulative distribution function (c.d.f.) of T(x)

explicitly. The right hand limit of a shadow to the r.h.s. of P., is U(z) = limT (z),

where Tn+l (x) = T(T"(x)), for n = 0,1,... , T0 (z) = z. The relationship between

the c.df., of Tn+l(x) to that of T"(z), n = 0,1,..- is discussed in Section 3.2. The
distribution of U(w) is obtained as a limit of that of T"(z). From the distribution of U(x)

we obtain the conditional distribution of the right end limit of a shadow to the r.h.s. of

P., given that P. is the first point in the shadow.

In Section 4 we employ the results of Section 3 to approximate the survival probability

function S(z, y) along the moving path between the points P. and PF, x < y. The

function S(x, y) is given by the integral equation

S(C, y) - A(= j y) + j B(zw)S(wy)dw (1.1)

where A(z, v) and B(x, yt) are defined in terms of the distributions of the lengths of

visible and non-visible random segments, as shown in Section 4. An algorithm for the

discrete approximation of the solution of (1.1) is given in Section 5. Numerical solutions

based on this algorithm are provided there too. A Quick Basic program (version 4.5) for

computations can be obtained upon request.
In a previous Technical Report [7] we approximated the survival probabilities by deriving

lower and upper bounds to the distribution of the number of uhooting trials, N, along
the path. The present study provides the method of computing the survival probability

ftnction S(x, y), which is required for various applications. With the new algorithms for

determining distributions of shadows and survival functions we can tackle problems like

the Hunter-Escort problem, which will be discussed in another paper.
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2. THE RANDOM FIELD MODEL AND THE DETERMINATION OF VIS-
IBILITY PROBABILITIES.

In the present paper we consider a two dimensional physical model. A generalization to

a three dimensional model can be done in a. similar fashion to that of Yadin and Zacks [5].
The moving path of the target is a straight line C. The Hunter is located at a point 0 (the
origin), at distance r from C. Let U and W be two straight lines parallel to C, located
between 0 and C, at distances u and w from 0, respectively; 0 < u < w < r. The
obscuring objects are modeled by a countable number of disks of random size, which are
centered at random points in the stiip S, bounded by U and W. We consider a cartesian
coordinate system in which the V-axis is a straight line through 0, perpendicular to C,
which intersects U, W and C at the point (0, u), (0, w) and (0, r), respectively. A point

P. on C has coordinates (z, r).
A random disk is represented by the random vector (X, Y, Z), where (X, Y) are the

random coordinates of the center of the disk, and Z is its random radius. Without loss of
generality, assume that the sample space of (X, Y, Z) is 3* $ x [a, b], where 0 < a <
b < oo. Let B* be the Borel a-field on S*. Let {(X,Yi ,Zj), i = 1,2,....) represent a
sequence of countable random disks measurable w.r.t. the same space (3*, B*, P). It is

assumed that the random vectors are independent and identically distributed (i.i.d.), and
have a common distribution H(x, y, z). Let F(z I x, y) denote the conditional c.d.f. of the

radius Z, given the center (X,Y) is at (z, y). Let h(x, y) be the joint p.d.f. of (X,Y),
such that h(x, y) = 0 for all (x, y) V S. We further assume that the probability that a
random disk intersects either 0 or C is zero. Let B be any Borel set in B*. Let N{BI
designate the number of random disks with coordinates in B.

If {B," B .Bm) is any finite partition of 3*, t = 1,2,, ,it is assumed that the
random variables N{B.}, i = 1,... , m are independent, having Poisson distributions
with expected values

S= AfJdH(x, y, z), i = 1,... ,m, (2.1)
Bi

0 < A < oo. Such a random field is called a Poisson field. The Poisson field is called
standard-.uniform if dH(x, y, z) = hlc(x, y)f(z)dxdydz, where 0 < h < 00, C is a subset
of S which represents the field of view of the Hunter, and I,(x, y) is the indicator function

of C. A point P, on C is said to be visible from O, if the ray R. from 0 through P' is not
intersected by random disks. In a similar mariner we can define the notion of simultancous
visibility of several points on C. In our previous papers [2,3,4] we have introduced the

functions K+(x, t) and K_(x, t) for 0 < t < co; where AK±(x,t) is the expected number
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of disks centered in S between the rays R, and R.,Lj, which do not intersect Rx. Explicit

formulae for K1(x, t), for the standard-uniform case, with a uniform distribution of radii

on [a, b], 0 < a < b, is given in the appendix.

Let [L, U] be an interval of the x -coordinates of the point on C belonghig to a segment

of interest. Let L* < L and U* > U be properly chosen, and CO the set in $ (trapez)

between the rays RL,. and Ru.. One can verify that the probability that P, is visible,

for some L < x <U, is

0(m) = exp{-[p(C*) - AK-(x, x - L*) - \K+(x, U* - x)]). (2.2)

For a formula of the simultaneous visibility of n points in [L, U], see Yadin and Zacks [4].

3. DISTRIBUTIONS OF LENGTH OF VISIBLE AND OF SHADOWED

SEGMENTS.

3.1. DISTRIBUTIONS OF THE LENGTH OF VISIBLE SEGMENTS,

In the present section we derive a formula for the conditional c~d.f. of the length of a

visible segment to the r.h.s. of P.,, given that P, is visible.

Let I(m) be an indicator function which assumes the value 1 if P. is visible, and the

value zero otherwise.

Let L(z) be the length of the visible segment of C to the r.h.s. of P., i.e.,

L(x)=infTy:yvŽ, fI 1(u)=})-x. (3.1)

We derive here the formula for
V(1 I x) = P{L(x) < 1 I(x) = 1). (3.2)= 1. - PTLx_.() > I I I~x) =f 1).

Let C* be the set of (z, y) points in S, which was defined in the previous section. We

derive the formula of V(l I x), for L < x < U, and 0 <, 1:< u - x.

Let C_(x) be the set bounded by U, W and the rays RL,. and R.. Let C(x,1) be

the set bounded by U, W and the rays R., R.+g; and C+(1 + x) the set bounded by U,

W, Ri+. and Ru.. Notice that C* = C_(x) U C(z, 1) U C+(l + x). As before, we denote

by it{C} the expected number of disks having centers at the set C, as given by (2.1).

Accordingly,

P{L(x) > i,1(x) 11 = exp{-[f{C-(x)) - AK_(z,z - L*)] - p{C(x,1))

- [1,{C+(1 +±X)) - AAK+(l + X, U* -- I - X)])

= exp{- ,{C*1 + A[K_(x,x - L*) + K+(I + x,U* -I- x)]).
(3.3)
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Dividing (3.3) by (2.2) we obtain

P{L(x) > it t(m) = 11 = exp(-[K<+(x, U* - x) - I+(l + x, U* - i-x)]). (3.4)

3.2. THE DISTRIBUTION OF SHADOW LENGTH.

We have denoted by U(x) the right hand limit of the shadow on C to the r.h.s. of P..

Let D(tt I x) denote the conditional c.d.f. of U(x), given that the shadow starts at P,.

Consider the rays R. and RV for V > x. Let N(x,y ) denote the number of disks

centered in $, which intersect both R. and RV. Define the functional

T(x) = sup{y : N(x, y) _> 1). (3.5)

Furthermore, let TV+l(x) = T(Ti(z)), i = 0, 1,... where TO(x) = x. Obviously, TV+l(x) >>

T'(x), for all i >_ 0, and therefore U(x) = ilis T'(x). U(x) - x is the length of the shadow

to the r.h.s. of P.. We derive first the c.d.f, of T(x). Clearly, (T(x) > t) = {N(x, t) . 1).

Thus,

P{T(x) _ t} = P{N(x, t) = 0) = exp{-(x, t)), (3.8)

where M(x, t) = E{ N(m, t)). Firthermore,

g(x, t) = p{C*1 - AK+(x, U* - x) - •K(t, t - L'),+ AK+(w, f- x) + AK_(t, t - t), (3.7)

where i is the coordinate of the bisector between R. and Rl. Notice that, since K+(x, 0)

K-(z,0) = 0 for all x,

t(x'c) = lm(x,') (3.8)

= /f{C*1 - AK+(x, u* - x) - )K_(x, x - P').

Hence,

limP{T(x) :5 t) = O(x), (3.9)
tic

which is the probability that Pc is visible. Thus, the c.d.f. of T(x), H(t; x) is zero for

t < x, it has a jump point at x, H(x; x) = O(x), and is absolutely continuous at t > x.

This property is inherited by the c~d.f. of T"(x), H,(t; x). We provide now the recursive

relationship between H,,(t; x) and H,,_l (t; x). Introduce the bivariate distribution ..

G.(t 1,t 2;X) =: P{T"-1 (x) _< tl,T"(x) < t2 }N
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Since {T"1(x) < t) C {T- 1 (x) < t),

H,(t;x) = P{T"(x) < t) (3.10)

= G.(t*, t; x), all t* >( ..

For z <z<y<t,

PTT"(x) _5 t I T"-2 (X) - z,T"-'(w) -= - exp{-[*(Cy,t) - ps(C,t)1). (3.11)

Indeed, given that T"-2 (X) = z,T"-(x) = i), {T"(w) > t) if and only if, there exists
at least one disk which intersects Ry and Rt, but does not intersect R,. Hence,

0,(t, t2 ;X) - j j exp{-[/A(u, 2) - P(X, t2)]}dGn.-(z, u; x). (3.12)

These bivariate c.d.f. can be determined recursively, starting with G, (tj t2 ; W) = H(t 2 ; X)

for all t1 _ t2, Moreover,

G2(t 1, t2 ; z) j " -(Ut") (j et('"0)d,) dH(u; x). (3.13)

Finally, since 9.+1(t; x) 5 En(t; x) for each t ?: z and all n - 1,2,,,, the cd.t of U(z)

is
P{U(z) _5 t} = l Hm H.(t; ). (3.14)

Thus, P{U(w) 5 t} = 0 for all t < z, and Urm P{U(x) 5 t} - (). The conditional
tic

c.d.£. of U(x), given {I(z) = 0) is

U (~uC) I ti- ) '_ O(,) for t (.15

'10, 
fort <z.

We are interested, however, in the conditional c.d.. D(u I x), where P. is the first point
(the left hand limit) of the random segment in shadow.

Simple geometric considerations yield that the length of a random shadow cast by a
aingle disk, having left hand limit at P., with center on a line parallel to U at distance h
from 0, and disk radius Z, is

&(x,h,Z)=r tan (2in-1 Z +tan-' ()) -, (3.16)
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where (x,, h) are the coordinates of the center of the disk, with+ ( 1))/
0=-h+Z(1+ . (3.17)

Thus, if a _< Z _< b w.p. 1, the minimal length of shadow starting at x is
0.X (3.18)

=r tan (2 sin1 l(2(z)) + tan-, (i)) r 3.8

where

+ + + 2)1A)2) 1/9

B(x) =•.;(.o

In Section 5 we provide computing aLgorithms for the numerical determination of the

c.d.f.'s V(l1 ) and D(u I x), and illustrate them with a numerical example.

4. THE SURVIVAL PROBABILITY FUNCTION.

In the present section we establish the integral equation (1.1). Let P. and Py be a

visible point on C and a point to its right, L* < x y < U*, The Hunter starts shooting

trials when the target is at P.. The attack terminates when the target reaches Py, If

it has not been destroyed before. Let S(x, V) designate the survival probability function.

We recognize three exclusive and exhaustive events.

(i) The visible segment to the r.hs. of P3 terminates at a point to the right of Py;

(ii) The visible segment on the rnh.s, of P. terminates at a point Pt, t < y, and the

length of the shadow starting at P1 is greater than y - t.

(iii) The visible segment on the r.h.s, of P. terminates at a point P 1 , t < y, and the

length of the shadow to the rnh.s. of Pt is smaller than y - t.

As mentioned in Section 1, the conditional survival probability of a target moving on a

visible segment of length L is exp{-q, L}, for some 0 < q < oo. Accordingly,

S(X,y) - e-(-)( - - x I X))I l
+ ec-,1 )(1 - D(y I t))dV(t - x jx) (4.1)

+ c- z"-{) S(z, )D'(z t)dz dV(t- x x),

where D(z I f) -D(z It) is the p.d.f. of D(z I t). Notice that D'(z t) = 0 for all

t _< z _< fi,,,(t) + t, Let z,,,(t) = ii.(t) + t. z,,,(t) is the first term on the r.h.s. of (3.18)
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with x = t. Let trn(z) be the inverse of zT(t) then, by changing the order of integration

we obtain

J '' ) Si ( z+ yD(z I t)dzJI dV(t - x x 42

f=V S((, v) { tm(8) e-'D'(z It + x)dV(t I dz.

Accordingly, define

A(x, y) = e-f(Y-0(l - V(y- x I x)) + e-"t(1 - D(y I t + w))dV(t I x), (4.3)

and t..(z)-X)

B(m, z) =1 e-g'D'(z I t + x)dV(t x z). (4.4)

Thus, the integral equation (4.1) can be written as in (1.1).

5. ALGORITHMS FOR DISCRETE APPROXIMATIONS AND NUMERI-

CAL EXAMPLES.

In the present section we consider discrete approximations to the functions Hg(t; X),
Gn(t, t2;x), n Ž> 2 and S(x, y).

For a given integer, N, partition the interval (x, y) to N subintervals. Accordingly, let
6=( y -x)/1N, to =x and tj = to+j 6 , j = 0,1,... ,N.

For i = 0,"., ,N, let

Al (i) = H(t,; to) = exp{-p( to,t,)}. (5.1)

For i=0,... ,N and j =i,..., N, let

2(isj) - Eexp{-(C/(tk, tj') - IA(to, tj))}. (r 1(k) - Ž1 (k - 1)], (5.2)
k-o

where Hi1 (-1) = 0. This is an approximation to (3.13). Notice that 62(0,j) H, 1(0) for
all j = 0,1,.., ,N; and for i > 1, j > i

62(i,j) = f1 (o) + exp{ pto, t .)) e* p p{-p,(tk, tj)1[H^I(k) - .l, (k- 1)]. (5.3)
k=1

Moreover,

G2(i,j) = 62(J,j) for all i > j. (5.4)
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II

We compute afterwaids recursively, for every n >_ 3, i = 1,... ,N, j = ... , N

i i

, = EEexp{-(((thtj) - s(tktt-))} I,(k,l) - On-,(k - 1,1)
k=O 1=k

- , 1- 1) + f._.(A - 1,1- 1)],

and for i > j

,(ij) O(j,j). (5.6)

Fori= 0, 6n(Oj) = 6n- 1(0,j) = .ft(0), j = 0,... , N. After computing these functions

we determine A,(j) = On(U, J), j = 0,1,... , N. &,n(j) i3 the discrete approximation to

the c.d.f. of Tn(x), namely Hn(t; X); i.e., Hn(tj;x) W n(j).

In Table 5.1 we present numerical results obtained by applying this algorithm to the

following special case.

We consider a standard-uniform Poisson field, with uniform distribution for the disk

radius on the interval (a, b). In the appendix we present the functions K.(x, t) I t O, for

this case. We compute the numerical example for Tuble 5.1 with the following geometrical

parameters: r = 100[m), u = 40[m], w = 60(m], a =- im], b = 2.5[m], X = 10[m),
L* = -100[m], U* = 100[m). We present in the tables the values of A,.(j), n = 1,2,3,

j = 0,... ,20, when 6 = 1[m].
As seen in Table 5.1, the convergence of 4tn(j) to the c.d.f. of. U(x) is quite rapid. We

have therefore approximated the c.d.f. D(u I x) by the sequence .b(j I i) = D(tj I ti),

i = 0,1,... , N, Ij = i, i + 1,.... The function A(x, y) was computed for the arguments

ti, tj, by the approximation

A(N,N) = 1
,A(,U - 1, N) = c-q'(i - fl(i N - 1)) + (1 - b(NV I N - 1))

A(N - j, N) = e-i,5(i - '(j I.V - j)) (5.7)

+ V - I)5(V(l I N - j) - (,'(I - 1 I N - j)).

.(1 -1(N I N-j +1)), j = 2,... ,N

where J5(1 I N - i) = j(D^(N I N - i) + D'(1N N - i + i)), (5.8)

for alli= 1,2, ,N. Recall that /(N N) =0= 1(N N+ 1).
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Table 5.1. Values of fl,(j) for two values of A.

A= 0.02 (1/rn2 ] ....... A = 0.2 [1/n 2 ]
HIf1() 3 (j) ki,(j) iH(j) H,(j)

0 0.4914 0.4914 0.4914 0.0000 0.0000 0.0000

1 0.5434 0.5434 0.5434 0.0000 0.0000 0.0000

2 0.6009 0.6008 0.6008 0.0000 0.0000 0.0000
3 0.6645 0.6642 0.6442 0.0003 0.0003 0.0003

4 0,7342 0.7336 0.7336 0.0021 0.0020 0.0020

5 0.8039 0.8030 0.8030 0,0130 0.0119 0.0119
6 0.8664 0.8652 0.8652 0.0576 0.0522 0.0522

7 0.9182 0.9170 0.9170 0.1828 0.1663 0.1663

"8 0.9569 0.9559 0.9559 0.4164 0.3843 0.3842

9 0.9811 0.9804 0.9804 0.6842 0.6484 0.6482

10 0.9934 0.9930 0.9930 0.8763 0.8507 0.8505

11 0.9985 0.9984 0.9984 0.9707 0.9590 0.9588
12 0.9999 0.9999 0.9999 0.9981 0.9958 0.9957
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
14 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000

S.oool 1.0000 10 1.0000oooo 1.0000 1.00
Similarly, we define

.6(N, Nr)=o

(A(N - 1,/N) I •e"91/2Pl(1 IN - 1)b(N I - 1), (5.9)
2

and for j = 2,... , N, l = 1,. ,j we compute

(A(N - j,N -j4+l)= i+1)L-e•(i I N - j) - f(i - 1 IN -)]. (5.1)

.[)(N - j + I- N - j + i) - b(N - j + I - 11 N - 4 i)],

where b(N -j + 1-1 I N- j +1) = 0.
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Table 5.2. Survival Probabilities 5(N - j, N), for A = 0.02(0.01)0.05,

N =20; a = 2, b = 3,5, r = 100, u = 40, w = 60.

.\\ 0.02 0.03 0.04 0.05

0 1.00000 1.00000 1.00000 1.00000

1 0.81711 0.82447 0.83112 0,83715

2 0.69730 0.72040 0.74052 0.75808

3 0.61877 0.65867 0,69187 0.71965

4 0.56729 0.62203 0.66572 0.70094
5 0.53352 0.60025 0.65163 0.69179

6 0.51135 0.58728 0.64401 0,68729
7 0.49677 0.57954 0.63987 0.68505
8 0.48718 0.57489 0.63759 0.68390

9 0.47460 0.56551 0.63027 0.67817

10 0.45820 0.55111 0.61788 0.66784

11 0.43776 0.53154 0.60001 0,65204

12 0.41376 0.50726 0.57671 0.63029

"13 0.38732 0.47959 0o,4917 0,60348
14 0.36009 0.45064 o.b1979 0.57418

15 0.33332 0,42283 0,49155 0.54589

16 0,30991 0.39803 0.46678 0.52137

17 0.28902 0.37709 0.44652 0.50189
18 0,27122 0,35999 0.43073 0.48741

19 0.25614 0.34607 0.41851 0.47687

20 0.24309 0.33427 0.40849 0.46864

Using these sequences, we compute

'(N,,N) = 1
S(N - 1, N)= Ai(N - 1, N)

and, for j = 2,... ,N
N,--

ý(Iv - j, N) A(Nr - dN) + b(N - j, N) + E 1(N - j, i)S(i, N). (5.11)
i=N-j+l

The function S(x, y) is approximated by S(0, N). In Table 6.2 we present the values of

S(N- j, N), for the geometrical paralieters of Table 3. 1, with a = 2[m], b = 3.5[m] and
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several values of A. Also here 6 = 1[m]. The value of q is -In(0.8). This corresponds to

the situation in which one shooting trial takes as long as the target travels 1[m], and the

probability of destroying the target in one trial is 0.8.
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Appendix: The Functions K*(x, t) in the Standard- Uniform Case, With Uniform Dis.

tribution of radii on (a, b).

Let K+(z, t, z) denote the area of the set bounded by the line L+, the ray R.+ 1 , t _> 0,

and the lines U and W; C+ is the line parallel to R., on its r.h.s., of distance z from

it. This is the set of all disk centers between R. and R.+t, of radius Z = z, which
do not intersect R.. In order to simplify notation, we assume that w = r. In actual

computations we substitute xw/r and tw/r for x and t in the formulae given below. Let

d = (x2 + w2)1/3. Simple geometrical considerations yield:

294 I [ 2 2 U- (A.1)
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where I{A} is the indicator set function, which assumes the value 1 if A is true, and the

value 0 otherwise.
Notice that K+(x, t, z) depends on x only via X2 . Symmetry implies that K-(-x, t, x) -

K+(zt,z) K+ (-x,t,z) for all -oo < x < oo. Hence, K+(x,t) = K_(wz,t) and we
delete the - subscript of K. Finally, K(x, t) = E{K(x, t, Z)) with respect to the uni-
form distribution of Z over (a, b). Let x, tu/d and X2 = tw/d. The function K(w, t)
assumes the following forms:

(i) If b < 1 ,

K(x,t) = 2- t , - ,(a + b). (A.2)
2w \ U+W

(ii) If a<xi <b:5r2

w2Y-u2 ( ,v 1-a d 1 (2_a)
K(( t) - t2-x d I- -_ _b a 22w ( b - , a b•_ a)(b T _ (A.3)

+ L gw2":-b - x, tw d (b 2 _',2) + d2( b - x 3).
2tw ( b-a b-a77-7

(iii) If a<zX1 <X2<b

K(x, t) = z-2,•a•d 1 ( - -a2)
2w___ d-u + b_ ) a (A .4)

2tw~ b- a+L•it -w b : 1 tw _ X2X-l)+ 3 (b a)(,'-•)

(iv) If XL <a<bbX 2 ,

K(x, t) - (a + b) + d(a2 + ab + b2) (A.5)
2 2 6tw

(v) If X1  a <X2 < b

K(x, t) = tw x2 -a d ( ) d2 _ a). (A.6)

2 b-a 2 (b- a)(2 -a 2 ). 6tw(b - a) (X2

(vi) If x 2 <a

K(x,t) = 0. (A.7)
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Graical MIthods-forExperiment Design

I. INTRODUCTION

A. The Role of Experiment Design in Statistical
Methodology

Before we begin to study graphical methods for
experiment design, let's review the role of thisi.
activity in the overall process of scientific
"investigation. How does experiment design i,(ipin?
This figure gives Horace Andrews' view of),

ursuit of knowledge as a repeating cyclecpoifomiiq
ypotheses, designing experiments, collq;.gcit

analyzing thie data, leading to new or reyij jý4
hpotheses. think of the steepness ofltt i as
tWrate of knowledge increase. (Soure, &1, diews,'DdL 11964),.
Th""e:experiment dosign plays a key ro14k'.m•
d•termining the slope of the line. A U.Jel-designed
,experiment willrpow damaxium information for a
given level of %=Mr The.azount of information
provided by te dxtperiment or data collection process
can be measum,.i, several ways. Our concern as
statisticians wil, lfgocus- 6n, three measures:

Variance
Confounding
Bias

We'll discuss these concepts in some detail on the following pages. For now, we'll say that variance
measures the precision of our information, confounding the ability to make assertions about one
hypothesis independent of the verity of another, and bias the degree to which our estimates measure the
things we think they measure.

A SIMPLE STOCHASTIC.EXAMPLE. Let's illustrate the importance of experiment design
for controlling variance. Most of our data collection

WEIGH TWO rrEMS (A, and B) efforts.wllthmere ftdeal with random perturbations in
SCALE HAS ERROR WrIT variance = a the:vauies-. R vdeed'variance of our estimates means

greater-precWion: greatr information for the same
amounrofworkt.. Let's weigh two items, A and B

APPROACHt 1 APPROACH 2. wit" ax.scale~whose-output contains a rando~p
component wiif! mean zero and variance a, The

A z"A B first! picture shows one design to estimate the weight(C) of A and B in two weighingsessions. The resulting
variance of the weights is dT. A less obvious
weighing design is shown as Approach 2. This

, a -A-B design also requires only two weighing sessions, yet2D) the variance of the estimates has been reduced by afactor of two!

variance(B) wý varnce(B) - (7,
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In this example, we'll see how experiment design
"can be used to reduce bias. Consider a set of
experiments to estimate the first order polynomial
coefficients for a Monte-Carlo simulation model

f. *" "output, y, which is a function of two parameters, x,
S,, ,,, * and x2.

roi 'i |The first design requires the minimum number of
runs. The estimated values for the coefficionts are
random variables, since the simulation model output
has random variation. What is their expected value?

Y-1o + +,4,1 +,XI If the simulation response truly has no nonlinear
2 1.yy,) I (X10•,') -I j,((y,.y,•.(y,.,)) / 2(,,,-,,,) .,s, component, then the expected value (i.e. Ion; run

S" 2(r) mat average value) of the estimated parameters will be the
'(l'YI, I txlxa) , l '((YaY4){YI*Y:)) I , , , true values.

BUT, suppoie model was: However, if the true response has some nonlinear
component, as iuustrated at left, the first design willNx1- t , ,,Az provide biased estimates for the linear coefficients.

"RN bThat is, the expected value of the coefficient
,. .. estimates will not be the true values. They will be

offset by an amount that depends on the nonlinear
terms.

The second design requires an additional run, but the resulting estimates are not biased by the presence.Uf
the intraction term if it is present. Planning designs to minirize bias may conflict with planmng a design
to minimize variance. We will return to this issue later in our discussions.

"WE EMPHASIZE THAT THE SELECTION OF THE MATRIX OF

EXPERIMENTAL POINTS REPRESENTS ONLY THE This concludes our brief motivation for the

PROVERBIAL TIP OF THE ICEBER1G, THERE-ORE, importance of experiment design in the scientific
WRVER S TRESS SUCH MATTERS , ASTHERNEEDFOR LE I proc"aess. Now we need to review the.steps that must
WE STRESS SUCH MATrER AS THE NEED FOR LRLY be taken to produce an effective experiment design.
DEFINING THE GOAL OF THE TEST PROGRAM. Of course, our whole design strategy depends on
ENUMERATING ALL POSSIBLE VARIABLES. AND HOW what we hope to learn from our effirts. The quotes
TO HANDLE THEM." at the left suimmarize these issues, in the words of

-Hahn ' two well-known applied statisticians.

Our specific interest is in computer simulation
"WHAT IS THE OBJECTIVE OF THIS INVESTIGATIOý?" 7models. The table on the next page is a classification

of common goals that engineers and scientists use

*J.S, Hunter simulation models to achieve. The goals are
arranged in order of increasing computational
burden. The last three experimental goals apply in
design and policymaking settings.
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Graphical Mthiods for Lxpcriincnt DCsignI I. INTRODUCTION Page 3

GOAL DIESCBIPTION MATHEMATICAL REPRESENTATIONI
I1 I nominal analysis, what-if comparisons I F(x), F(x) vs F(y)
2 1 sensitivity analysis, uisighr, screening I F(x)-F(xo)+F'(xo)(X.Xo)+ ... I
3 optimization (constrained or unconstrained) I min g(F(x)), s.t. x t S, F(x) -T I
4 tolerance analysis I Prob(F(x) t 1) and related statistics !
5 1 tolerance design I max ProbtF(x) t T), s~t. E(x) t S I

Goal 1: Nominal analysis is used to test a theory or to validate a design. Often there is interest in
comparing a small number of alternatives. For example, a pair of discrete event simulation runs .might be
usedt to compare the performance of two alternative digital communications protocols. Here the vector
function F(x) will provide various measures of communications performance (e.g. average delay,
maximum delay delay by message class, etc.). Schroer and Tseng (1987) use a DEDS simulation to
perform "what-i" analyses on alternative manufacturing system parameters.

Goal 2: Sensitivity analysis serves three purposes. First, it presents a local model of the system
response surface (e.g. a Taylor series or least squares polynomial approximation) that can be used to study
the operating behavior of the true system. Second, it provides an opportunity to screen out unimportant
factors before moving on to more detailed experiments (goals 3-5). Third, it identifies highly influential
variables that require careful control for process stability or that require accurate estimation from empirical
data. These roles am interrelated.

Goal 3: One might want to design a particular amplifier circuit to minimizepower dissipation subject to
constraints on frequency response, output power, component costs, and environmental controls. This
optimization could be quite difficult if the decision vector x included the kind of circuit components used
(e.g. high or normal efficiency transformers) and if the response included random perturbations. It would
then constitute a discrete factor stochastic optimization problem with implicitly defined constraints (and
objective function). The satisfactory general solution of such problems is beyond the scope of current
methodology. On the other hand, cases where all variables are continuous and deterministic have been
addressed in a number of studies (e.g. Freeman, et. aW., 1988).

Goal 4: Tolerance analysis identifies the multivariate distribution of the performance vectorF(x ), that
will occur for a particultr (multivariate) distribution of the control parameters represented by x. For
example, if the holes in an electron gun grid have x,y location errors with a multivariate normal

distribution N ((o ), 021), what will be the distribution of the spot size vertical and horizontal diameter
(DV, DH)?

Goal 5: Tolerance design involves trade-offs between incompatible objectives. The'optimal' design in
terms of circuit performance may result in a design that is difficult to manufacture. Component value
variations can easily move the operating point outside some set of constraints, resulting in low yield. A
more manufacturable design might be the point would allow for some variation in component values and
still maintain acceptable (if not optimal) performance. These design problems are beyond the scope of this
course.
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Experiment design goals are classified in another
dimension: the stage of the investigation; that is,
how far along the path of knowledge we have

EXPERIMENTAL DESIGNS progressed. At the earliest stage, a pilot
experiment is designed. Its main purposes are to

CLASSFICATION, debug the experiment running and data collection
procedure, and to verify the feu•ble ranges for the

PILOT I SCREENING I EXPLANATORY I CONFIRMATORY independent variables (see more below).
SEQUENTIAL/ S spas) Screening experiments may then be run to

U INTI/MULATANOUS eliminate variables with little effect on system
CONTINUOUS DISCRETE (factors) performance. This allows us to reduce the size of

future designs to study the important effects in detail.
The first detled experiments my still be
exploratory, in that the nature of the key variables
has not yet been established. Findings from such
exploratory designs should be checked with
additional data from a confirmatory experiment,
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Exercise 1: Identify the purpose for an experiment you are considering in your work.
Give the purpose in words, and identift which if any goals in the previous
table cprrespo d to your intereg.s. Determine whe her you are at the pilot,
screening, exploratory, or confirmatory stage.
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The second step in the experiment design process is
to identify variables or factors that will concern us in
the course of this investigation. This includes things
that we can adjust or control (independent variables,
resulting system outputs or performance measures

STEPS IN EXPORIMENTAL DESIGN (depencdent variables), things that we can't control
but that we know affect the system (nuisance

S2 IRE N-nFY variables).

DEPENDENT VARlABLES These three kinds of variables are usually all that
NUISANCE statisticians identify In the design process, but there
INTERMEDIATE J is a fourth important class: intermediate

variables. Often a scientist or engineer will
understand the effect of one factor on a dependent
variable, but will not be able to control that factor
directly.

For example, the strength of a composite material may depend on the average size of gas bubbles in the
material but this quanUty cannot be controlled directly. Rather, bubble size is affected by mixing rates,
chemical composition, curing temperatures, etc. One of the most difficult tasks in the initial stages of
experiment design is to distinguish the Intermediate variables from the truly independent, controllable
variables.

The third step in designing an experiment is where
modeling comes into play. Usually we narrow the
scope of the investidaton by dciding to hold some
independent variables fixed at particular values. For
the factors that will be varied, ranges must be
established.

3 CLASSIFY INDEPENDENT VARIABLES We usually entertain one or more models of the
system response as a function of the independent

WInCH VARIED WHICH FIXED variables of interest. Often this will be a regression
WHICH OUNTINAR, NONLITAR model. We must also determine which variables will

LINEuAR Nbe treated as quantltadve (e.g, maximum vehicle
speed, total number of troops), and which asTualitative (e.g. kinds of ve icle, type of weather).

qhe uantitative factors may affect the response
variable(s) in linear or nonllnear ways.

Systems with all qualitative factors are often analyzed
with Analysis ofVariance (ANOVA) models.
Systems with some quantitative and some qualitative
independent variables are often analyzed with
Analysis of Covariance (ANOCOVA) models.
Systems with all quantitative variables are often
analyzed with Muldvariate Regression models.
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Exercise 2: Classify the variables for an experiment that you propose to conduct:

Independent Variables:
Quantitative:

-Linear:

-Nonlinear:

Qualitative:

Which of the above variables will be held fixed for the proposed experiment? Which wiU

be varied?

FIXED: at what values? VARIED: over what range?

variable value variable lower limit upper limit

Dependent Variables:
Quantitative (preferred):
Qualitative (if you must):

Nuisance/Noise Variables:

Intermediate Variables:
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We are now ready to identify the set of conditions
that will be used for our experiment. This is the
fourth step in the design process, and the main focus
of this report. There are many ways to choose a
designI for the experiment. The list at the left covers

13.1 A LIST OFl CONsghucraoN h j many of these, both graphical and non -. raphical
7110 (allowing ,., o f consun lo, design(Raktoe, Heydayat and Federer, 198 1).
literature: Furthermore, in addition to the considerations

(1) Ortholonal Arrays, imposed by the purpose, the number and kind of
(0) fialAned array,, variables, and the model, the design choice will also

(0i1) latin squares and orthogonal Latin squares, depend on whether we want to use a simultaneous
(1v) Plinamad maitries, or sequential strategy, For a simultaneous strategy
0v) Con. undi•, we establish a number of experimental conditions a-

(00i) Gorap t•hory., priori and collect data for all conditions before
4441) Alphhs = 'r beginning analysis. This has advantages where
(ix) Comblnatorlal topology, parallel runs am possible, such as in agricultural
(W Foldaver,
(XI) collapsing of dlvels experiments, or for certain parallel computing
(al1) Compooltioa (direct product and direct gum) applications of simulation models.

(Kill) Codes,
(xlv) Block designs, A sequential procedure changes the desig based on
(xv) ,.aqur. the available Information befdre each new data point
(KVI) Welilhdos deight, '(xviI) Lallice deligns, it collected. The settings for the next run are not

(Xvll) FiLice dxigpl. determined until the current run's results have been
(Ni) Oinl.i-te m, analrzed.

(xx) Trial And ewor, y

In this course we well focus on graphical methods
for choosing the design points. We will devote the
greatest attention to simultaneous desips, but "0
evolutionary operatont (EVOP) sequendial designs
will be discussed also.

While the list above is long, the realistic strategies
4 CHOOSE A DISION available to engineers for developing an experiment

COOKBOK odesign are simple: a) choose a design from a book,
COoKBOOK b) use a computer program to generate a design
IAT•EMATICAL (COED, I.CHIP, ACED) based on your input specifications, or c) generate

GRAHICAL your design graphically.
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Once a design has been selected, its mathematical
properties should be checked to verify that it will
provide information which meets the goals for low
variance, bias, and confounding. Fortunately and
surprisinglI, it is usually possible to assess the
.qua , the information that the design promises
Wf.91 we get the resultsl We'll discuss tie
mathematics of this procedure for the General Linear
Model in a later section.

GRAPHICAL METHODS FOR
EXPERIMENT DESIGN

DESIGN STEPSt

I PURPOSE
2 IDEI'rIFY VARIABLES
3 CLASSIFY VARIABLES

CHOOSE OR CRBATE A DESIGN These five steps of experiment design are
SVALIDATE THE DESIGN summarized in the table at the left. Only after

completing all five are we ready to carry out the
experiment, collect data, and analyze the results.

WHY GRAPHICAL METHODS?

STANDARD DESIONS WON WOK.K

KASRa TO CARATS EW DUEIoNS WrrH LRIOIr SKAIN TOOLS

INIUu•-AW'NS SIMPLRu C. Overview of this Tutorial
CAN 82 USED IN DATA ANALYILI

In this course we will focus on steps two, four, and
five. For each of these activities we will present
graphical tools to make these tasks easier and more
fun] Only step 5 will we deal In some detail with the

l .- ,statistical models and analyses that will eventually be
"performed,

Each new technique will be illustrated with one or
two examples. We introduce the main example in the
next section.

There are exercises included for you to try to apply
these tools to a design problem that you have brought
with you.

-- "By the end of the course you will be understanding
-. and using graphical tools like those at the left. And

i. remember, an experiment tat is well designed willprovide you with maximum Information, and will
.=. --- ,usually be easier to analyze!
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•• •'-,'d•. D. Introduction of Main Example

.,,.•• • It will be helpful to illustrate these methods by
•. "'\• • •,,I" J ..• 71 considering examples along the way, We will return'

often to one particular example and follow it through
,,,,-. t • \ ,,•o / ,,•Vl a disk pressing operation,

S( • : •TA €O•IOIION /
SMAIN EXAMPLE: Disk Pressing 0=•¢radon

We want to understand a yinyl disc pressing
operation, ann through this understanding improve
tlie quality .or the product while reducing ihe
manutacturing costs, The disk manufactunng
operation conmts of a number of steps,

Alpha p'ress for vldaodlao manufacture
First, vinyl pellets arc melted and formed into a 3"
puck by.t•e extruder strewn at the left. The puck.is
removed morn the extruder oya meohardcal arm ann
placed in a large press, The vinyl ts compressed.
between two steam-heated molds under liydrauaF
pressure, When the. molds nearly touch, a switch
•ggers.the end of tl•e steam reed to the molds and,
attar a shgrt delay, cooling water is pumpy, d though
me same Lntemai channeli in me maids. The

HINt-, OUTPUT €.IIAK1"$•,, duration o£ this cooling cycle is controlled by a t•er.
€,,,,• ÷. ,,,.t.• ,•, •" After this time, the hy•aullc pmnure Is released, the

,,,,,,,,.,,,., , / [ press is opened, and the disk h removed.
•^ • "•1"•' •''' •" ;"" One p.roblem with .dls.ks is.wa•'p, W..arp Is measur•l.

•# • • .#I
•,,m., • /,,',, .#/ as peak.to-peal< v.art.auons in flie height at the outs•e

•_""•' •..;V {/ edge era disk as it ts spun on a turntable. Too much
SI . .../ w arp (m ore than 15 m ils, say),is unacceptable. W e

I , expect tttat warp is caused by mtema• stresses in the
S' - dis'k, which m ay in turn be caused by the rate at• r,,,, which the vinylis compressed to form. the disk and

the cooUng process, We also exp•t that thicker
disks willbe less suscepl:ible to wm'p.

. et• • •'• i

'rl,,MI I

II
S- The figures at the left show typical tem perature,

TiJ,•i
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Utifurtunately, warp is not our only concern. We
also must worry about disk weight. Thicker, heavier
disks contain more material, and thus cost more. We

j~~ S also know that changing timers and pressures on the
press will change the time it takes to make a single

(0 A-uS a dsk. Since the machines which make the disks are
expensive, at long cycle time will not be acceptable.
As in many experimental situations, we have multiple
competing objectives. Increasing the disk thickness
may decrease warp but it will increase disk weight

L W p and consequently material costs will be higher.
We will return to this example to design an

Lo L ~ .D~l e &or e~eietto learn how teresslng parameters
CM"417"e4a L..osr) want to predict warp, weight, and cycle time as

Dolynomflal functions of the independent variables.
We will need to identify the key variables, choose

LOW'4 ~ '1' C. Le r~ MeC models, choose a design, and validate the design.

(i+~ 1+ ~ i,~'(We can think of our experiments as carried out on
an actual disk press or by running a complex
computer simulation of the disk pressing operation.)
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II. GRAPHICAL METHODS FOR IDENTIFYING
41 0"4 • AND CLASSIFYING VARIABLES

How do we identify and classify variables? Without

tools, this process can be long and confusing.
Process '�TmExercise 2 was intended to provide a worksheet toProcess help in this process, but it can only serve as a list

4',,,, checker, not a list generator.

A. Andrews Diagrams

One graphical tool for representing the factors of an
0041M VOW,, experiment Is the Andrews Diagram shown at the

left (Andrews, 1964). For this example the goal Is
.to study the process of making SPAMI The

incoming arrows represent ini ependent and nuisance
factors, the outgoing arrows represent the dependent
variables of interest: flavor, texture, etc.

This graphical tool Is a start but it falls to help us In two ways:
1) to unaerstand the distincton between independent and Intermediate variables, and
2) to represent complex causal relations involving intermediate variables, where a response variable
depends, through a chain of intermediate varables, on one or moe independent variables.

The Andrews diagram leaves us with the uncomfortable feeling that we haven't identified ALL of the
important factors for a particular experimental situation. The next two tools address these shortcomings.

B. IDEF Diagrams

These causal diagrams were first presented by
Douglu Ross in-1977. These diagrams can be usedSCONTROL. FATOR8 to describe the operation of any complex system.
They will help us to identify all the Important factors

OPERATION in the system we arc trying to model, and will enable
INPUT on OUTPUT us to separate independent, nuisance, intermediate,

PROCESS 0 and dependent variables easily,(A VERB) IDEF diagrams (also known as SADT) are block
diagrams with a formal process for drawing and

MECHANISM labeling incoming and outgoing arrows, A!rows
O indicate input quantities fr6m the left, control
ENAOLING RESOURCES parameter from the top, enabling resources from the

bottom (mechanism) and outputs to the right. Thl
action taking place is described in the box. Thus the
arrows are labeled with nouns (factors) and the box

IDEF DIAGRAM: Basic Structure with verbs (model),
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TIMERS Theme figures illustrate the use of IDEF' diagiams for
GLASS SWITCH the disk pressing example. Notice that
RMVLOWHCHTANITIO a) the diagrams are hierarchical: it Is possible to
MAX HYDRAULIC PRESSURE break down the activities in a high level box to lower
EXTRUDER RPM level boxes. Outputs from one [ower level box
NUMBER OF EXTRUDER PINS which are inputs to another lower level box are

intermediate variables.

b) a pattern of boxes from upper right to lower left
VINYLiniaea odnnedpnecreao.

PLES MANUFACTURE DISKS DISK'S in0ae0 oiac/dpn.ec eain

ALPHA PRESS The lower figure shows a more detailed breakdown
MOD of the pressing activities. This allows one to identify

IHYDRAULIC PUMPS dependency relationships among variables, and to
ICOOLING WATER uncover variables previously overlooked. For
TRIMMING BLADE OR BIT example, we must now wonder whether there really

are no control factors for the disk trimming
operation,

wpmu ~Below are some general tips on using these

CIO 1) Break down to the bottom level of detail to
ientify all important variables and claisify them as

independent, fintermediate, etc.

&UH 2) Control variables (top) are the 'independent' or
Osma, ots nuisance' variables, if they come from outside the
18 1-main box, Otherwise they are 'intermediate'

___________ variables. The dependent variables exit the main box
f 11"NOIAMO611 at the right. Distiniguish independent variables from

nuisance variables by whether they are controllable
(the former) or not (nuisance). ContrU~able means
there is a 'knob' to adjust the parameter.
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Exercise 3: Draw an IDEF diagram for ,- process or simulation model on which you
plan expurimental studies. Carry the diagram to at least two hierarchical
levels of boxes, three levels if necessary. Create a list of independent,
intermediate, nuisance, and dependent variables from the diagram,
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MAJCAUSES

C. Ishikawa Fishbone Diagrams

STOOThe relation between independent, intermediate, and
TRA&Wrdependent variables is made clearer in an IDEF

PE P ,.,ss Ndiagram. Another graphical tool that makes this
SSUSCJJs relationship clear is the Ishikawa (1982) Fishbone

Diagram.

ISHIKAWA FISHBONE DIAGRAM: Basic Structure These diagrams must be created separately for each
dependent variable. That variable is named in a box
at the right edge of the paper. A horizontal line is

AFTER PRESS W extended to the left, and diagonal lines representingIcauses' of the dependent variable are attached.
,,c T1.4 \ Ishikawa suggests four main cause lines: people,

machines, material, and process. Of course you are
"VI"'a" free to choose other main causes.

.44.0 T~DP Of*To `2POcEl

A The diagram at the left illustrates a fishbone diagram
RAý CLý.-OES9.0, 0" *- o" for the dependent variable POST-SOAK WARP for

lb I POST SOAK the disk pressing system. The diagrams below
TNWS %K CAr-.tWON shows a similar fishbones for cycle time and disk

4T weight. The latter two both occur as branches of the
"warp fishbone as well (but are not elaborated there).
This fishbone interaction is common for multi-
objective studies.

"PRS s'G:4OBA'h As with t,. IDEF diagrams, it is possible to read off
the independent, dependent, etc. variables from the
diagram.

1) Independent and nuisance parameters are labeled
l) MEcauses or subcauses which themselves have no

further subcauses (impinging lines). If you think of
the diagram as a tree, these are like the leaves.

2) Intermediate and dependent variables are causes or
subcauses which are in turn caused by other things.
They are branches with twigs or leaves attached.

W' •There is at least one dependent variable, the box at
the right of the diagram.

3) Independent and nuisance variables are
distinguished by whether a 'knob' exists.
Intermediate and dependent variables are
distinguished by whether or not you are directly

ck,,. w"v•c M-a ITT 0"concerned about the parameter value (dependent), or
only about its consequential effect on other measures
of system performance (intermediate).

The circled parameters indicate the set that has beeni/i• , chosen to vary in a hypothetical experiment. These
figures are from Young, et. al. (1987).

-V T"" MI" 10 IM
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Exercise 4: Draw a fishbone diagram for one dependent variable for a process or
simulation model on which you plati experimental studies. Carry the
diagram to at least two hierarchical levels of subcauses, more if necessary.
Create a list of independent, intermediate, nuisance, and dependent
variables from the diagram.
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SCOMPONENTI

REWOR STUFFING PREHEAT

zSQOUENCER AUTO PARTS INPC

WAVE TOUCH PRODUCTION
SOLDER UP TEST 3 OUT

The block diagram (not IDEF!) above illustrates the
key steps in a printed circuit board manufacturing
operation. Assume we have built a discrete event
computer simulation model of this operation which
we will use to optimize the throughput.

This diagram shows a partially completed fishbone
diagram for the printed circuit board process. The
main causes have been chosen to correspond to

-'ETEA R p'&,•,rocesses. The variables that have been identified so
SPEC DE tar are:

- -" ALD INCRTKI ON

C ",*` SENT fP PIndependent:
OF =MS WPART hole diameter specification

sequencer bin filling procedure
insertion arm routing instructions
('register marks' needs more specification before we
have the appropriate 'knobs')

WAVE SLE TU UP Dependent:
throughput

ISHIKAWA FISHBONE DIAGRAM: Circuit Board Manufacturing Intermediate:

% failed insertions
# missing part occurrences
hole diameter

Nuisance:
optical device accuracy
bent leads
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D. Discussion of Main Example
The IDEF and Fishbone diagrams have helped us to.

VARIABLES FOR THE DISK PRESSING EXAMPLE: perform Step 2 in the experiment design process.
For our disk pressing example, we have Identified
the variables shown at the left. This list has beenINDEPENDENT VARIABLES: shortened and simplified for this course presentation.

Timers T-6, T-12, T-13, T-22
Full Clamp Pressure

Lo-Hi Transition Pressure Threshold

Ram Velocity

Glass Switch Setting

Vinyl Composition

Soak Bath Temperature

Soak Bath Time
Step 2 in experiment design involves identifying the
key variables. In Step 3 these variables are classified

INTERMEDIATE VARIABLES (some of them): as fixed or varied linear or nonlinear, quantitative or
Time to Reach 120 Diameter qualitative. All of these decisions are ititmalely
Bead-Hub Delta related to the mathematical model(s) that will be fittodBeadHub eltatO the system response(s).
Disk Temperature at Release From Press

NUISANCE VARIABLES (s0ome1 of them):

Room Temperature
Maximum Steam Pressure

DEPENDENT VARIABLES:

Post-Soak Warp
Cycle Time
Disk Weight

OPIRATIONALMOODIING IOIIIONI:

STEP 3 IN EXPERIMENT 09ll8ON

. SELECT A BIT OM DEPENDENT VARIABLES FOR STUDY

C CLASSIFY THE INOIPINDENT VARIAILES:

WHICH VARIID IN EXPERIMENT WHICH FIXED
(SPECIFY RANOE1 (AT WHAT VALUE)

WHICH QUANTITATIVE WHIOH QUALITATIVE
WHICH LINEAR WHICH NONLINEAR
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600 Note that we are considering the model form
BEFORE designing the experiment. The example

T here illustrates the importance of this step. Imagine
an experiment to estimate a reaction rate that depends
on temp ture and pressure. Let y represent the rate

7oo and let-P> and T represent. pressure and temnrature,10o 20 respectively. Here a p,,ticular design is aull/

factorial for -a model ,.,f the first sor.This means
ya,(T) P) e BALANCDthat each value T ru, i the experiment is run in

a(Ticombination with each value of P tun the
experiment.

14,00 . If our model were based on the same two variables
t2.000 but in a different way, say PT and T/P, then the

PT same design takes on a decidedly poorer
appearance, and is no longer a full factorlall

71000
6,000

30 35 T 0 70 Source: Satterthwaite (1959).
T/e,

Y - a+ a1ý(PT) + a(T/P) + • =j' UNBALANCED

DESIGN GOODNESS DEPENDS
ON THE MODEL In our modeling work we will often fit polynomial

response models to simulation model outputs as a
function of simulation model inputs. These will take
the general form:

yi = j xlj+ el, et are i.i.d.- N(O, c2)

Usually x0 * 1, and the x's may be different
independent variables, powers of independent
variables, or products of independent variables. For
our temperature/pressure example, we may have
xil - T, x12 = P, xL3 w T2, x14 n P2, xi = TP, and
so forth. The e, are random variations which are
usually assumed to be independent, indentica
distributed Gaussian random variables. We wiH
return to a more detailed disuussion of this 'General
Linear Model' in Section V, where we also mention
some alternatives for metamnodels of simulation
model outputs.
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DEMI¢NrI'I(NS

IlI. MULTIDIMENSIONAL POINT PLOTS Pg (

0eflnition: An experiment is a set of one or more runs (of a simulatlon III MULTIDIMENSIONAL POIN PLOTS
model) made to tiet it purilcuhar set of objectives. A. Review of Design Terminology

I)annition: An Independent variable is a parameter of tile (simulation)
system that con be explicitly adjusted by ilie experimenter. Our main focus in this section will be on graphical

methods for developing designs. First we will
Oefinition: A design factring it iadpendont vuriablc that will haeet. review some basic concepts and terminology from

value changed during tie course of an experiment, the field of experiment design. We will use many of
Doflnnidon: A design rraime is it specification or these terms in our discussions later with no further

-which indepenidant varlaible will be held Iixcd(& value) explanation.
.design factors(& ranges)
-what system outputs will be measured,

Definition: An experiment design is a set of specifications of design
factors for an experiment, along with a single specification
(vector) for the inidependent variables that are not design
factors.

Deflnition: A design anatrixdepends on the model to be fitted a well is
on the experimental conditions. There is a column in tile
nmatrix for each learn In the model to be fitted, and a row for
each (simulation model) runn. ach row of the matrix holds ilh
values of the model tems for the correapondinS run.

TURMS AND TOPICS IN IXPBRIMIUNAL DBUIGN

Nuisac variable:

lBumple.: random # seedatifng condtions, thne

Bloeldq8. nature of InfluMna undsarsttod
(blat lIke i orbwr dcsip factor)

Randeomltion. nature of Influence not undsmod

Fatorial Deelgsi

An experiment run for saci possible comiblnaton of
factor eveils: If alt facto.s at Iwo levels, than nrun
coreespond to verticae of an n.4imsnlooal cube.
Fractional Factorial Delis. not all verld"!

Pull Pactortial Practional FacorAI
23 (3 factors) 2"' (3 (Acton)

320



SGraphical Mctlods, (or Ixporimnti Deign Ill. MULTIDIMENSIONAL POINT PLOTS Page 21

FrXAMPLE:

Model: Y=00 + l1X1 +'A2X2 + "1xIX." This illustration of the design matrix also gives us
our first graphical design. It is a 'factorial' design.

X l ( X, X,.

4X 3 2 1 2 2

4 a aK 1 3 4 12

1 1 4 4

2 *> 1. 3 2 6

I 3 ,

," ,,-, Another important class of designs are 'mixtum'
A designs. In chemical formulation problems, one

oftenhas to have the components add to 100%.
"Thus arbitrary combinations are not possible. This
kdnd of experimentation can be important for strategic

,,., ,,., ,, -models as well, where the total resource pool is
•aun ,,fixed, and the choice is how to deploy the resources
.., .. or what to purchase with them.

Source: Scheff6 (1958)

6, w , 'lw
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TrI•,RMS AND TOPICS IN ,XIPIIMIENTAL I)GSI(N

Confounding:
Dclign won't allow independent estimation of two
or moem model parametcrs,

lixample: change two variables from previous run,
and simulation output improves, Which change (orboth) caused ilio improvement? For practical design problems, 'optimal' designs

Resolution:
A mathematical measure of the nature of confounding often do not make sense, because there may be
fur various rractiunal luctorll deigns, considerations or constraints that cannot be described

Dial: mathematically.
What if postulated model Is wrong? What impact on
parameter estimates?

Optimal Design:
Optimal in a limited mathematical sense, Definitions
of optimality based on properties of the matrix XKX,
( X il the design matrix)

Example: D.Optimality -=u. max determinant I XTx)
K

(for a fixed number of rows in x)

Optimality depends on the particular model.

Its, These figures rem-dnd you of the issues of bias and
Saconfounding. For the first pair, the design at the

I right guards against bias in the first order terms
caused by a nonzero interaction (xlx2) term. The
"second pairillustrate fll and parda confounding of
two effects.

X2  X2

X X

CONFOUNDING CONFOUNDING
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Recall that your main strategies for choosing a design
are cookbook, software, and raphical. Each
approach has advantages' andfnlone should be used
exclusive of the others. One advantage of graphical
design is the clarity of the presentation. This inakes

"Definition 13.1: A txn matrix A with entries it easy to communicate your study to others in your
from a set S of s symbols Is called an organization or to your clients. Compare the clarity
orthogonal array of size n, t constraints, s of idea with the mathematical description at the left.
levels, strength d, and index X If any dxn
submatrix of A contains all sd possible dxl Historically, graphical methods for experiment
column vectors based on s symbols of S design have not been recognized as an entity. A
with the same frequency ,." computerized literature search of scientific journals

gave zero entries with keywords graphical and
experiment design in the last ten years, Yet
graphical meth~s have been used by outstanding-Ralqoo, Heydayat, and Federer statisticians to develop well known designs,
including Box's centril composite design, Let's
look at some of these designs and see what we can
learn about creating our own.

B. Examples of Graphical Design
I' m Loel '"o "I ,.-,-. Lets begin with the simplest and most frequently

"1 used class of designs: factorial designs. These are
applicable when we have quantitative variables with

Isivalues, upper and lower bounds on reasonable

~ Oil low OIl 10.14 #110*
I.W • t, I•' Ikt - b I41

.0 A Ai1.11,,.I to,

| llr• ,n i1iw,

'',,'"' .Here we return to the Andrews (1964) SPAM study.
4',,'"' ' The graphical representation here is very simple,

with designs for experiments involving one, two,
three, or four independent variables (factors). Note

loll' . " that the four-dimensional case is represented as a
,. pair of cubes. We will use this approach to generate

"even higher dimensional designs.

I-loll.t II;,It

l _
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Here we see a template for a 25 factorial design. For
experiments with many factors, we will usually

: choose to run only a fraction of these points. This
diagram, then can be thought of as a template for
identifying conditions that will be run. At these
vertices, we will draw a circle, square, triangle, or
some other marker.

A= How do we decide which corners to choose? Of
course, one could use a standard fraction, choose a

d defining relation, or use a computer package to do
this. We will illustrate here how to do it
graphically.

A 2' Factoril oeilgn

s1 4bleek I OyelI ngel. Ig s Iletlers, bliee Is b1*41441

V VARIAULE A AND I
AT I L VLS I
AT II L L11

0 CHANK OWEVARIAULI AT ATIME
0 -CNANE T*WO Conlider these two designs described in two ways

VARIAIL91 ATTh '
A TIME by Youden (1962, 1972). The design resentation

at the top makes it clear that the one-at a = strategy
is inferior in terms of covering the design space to
the two variables at a time design. The preferred

PROBLEM: SELCT MOST INFORMATIVE design is shown in tabular form In the lower figure.
SIX POINTS PROM 4P POINT SPACE Its advantages are no longer apparent. It is

"rag"ofN"*IN *" '"10" interesting to note that Youden presented the clearer
representation ton years aft-r the tabular form. Do
you think he created the &sign using the table or the
graph? Which do you think would be easier?

Taws.u 4,
1,0,fo t. sar-w•,.- tw. Vahiam o4.,m, ON VA twof016. 'What advantages do you see in the two-factors at a

-ut ime design?

X .
E XX 

bl 
Jill,

Ing fallere to salinsill a - r
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19'•lHNO YAtW"U

Y Consider these two designs for estimating the effects
C GO of three independent variables, X, Y, and Z on a

dependent variable, say W.

A Source: Youden (1972)

Y AQ: Why might you say that the design on the right is
0 E 'better' than the design on the left?

CHANGE ONE CHANGE TWO A: Lots of ways to answer. Jot down yours:
VARIABLE VARIABLES

This figure illustmtes that each projection Is a full
factorial. That means if any one of the three factors
has Insignificant effect on W, we will have gotten a

0. 1. P. §M AND J. a, ,, Vu full factorial design on the other two factors for freeI
Box and Meyer (1986) call this 'exploiting effect
sparsity'. That is, when we study many factors, we
expect that most of them will have little effect on the
dependent variable (here called W).

Q: How do we check that we will be able to exploit

- effect sparsity?
A: Look at the projections of the design. Do they
yield full factorials or at least good fractions?

Q: What does a 'good fractional design' look like?
htoaun 2--ProJeoot of W, 1 I4to Unra 2' fatoridu,

A: Check the confounding patterns

Source: Box and Hunter (1961)
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These diagrams can be viewed in two ways. First,
consider an experiment with two independent
"variables, X and Y. We will study their effect on a
dependent variable W. To compute the main (linear)
effect of X, we would subtract the average of the W
values measured at the light circles from the average
W values at the dark circles on the leftmost figure.
The XY interaction effect on W would be measured
by subtracting the average W's at the light circles
from the average at the dark circles for the rightmost

0-0 "- *-0- figure.
MAIN EMTr 7WOPAC'ro (To see this, label the low and high X and Y values

M'RACION as 0 and I respectively, substitute the values in the
model a+bXýcY+dXY to get a formula for each of
the four points, and then perform the subtraction)

NOW view the figure in a different light. Suppose
that the DARK circles correspond to a l-IGhtvalue
of a third independent factor, 7. How do we,
meas=ur the main effect (linear coefficient) for Z? By
subtracing the averae of the liUht circles from the
average of the dark ciles. For the design at the left,
the same quantity is also used to estimat the main
effect for X. Thus for the design at left, we will not
be able to separate the effects of X and Z. We sayZ F that the main effect of X is completely confounded
with the main effect of Z.

Q: In this new light, which of these designs Is to bepreferred?

A: The design on the right.

0-0. -- 0 Q:Why?

M.,MFMFCr RwO.FAOcrR A: Statisticians assume (sometimes wrongly) that
lrUM1CfON second order effects (nonlinear) will be less

z important than first order (linear) effects. Thus the
Z second design confounds the coefficient of Z with

the XY interaction coefficient, and the XY interaction
coefficient Is assumed to be smaller and less
important than any of the main effects for X, Y, or
Z.
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We have learned several graphical lessons from these
simple designs:

Block * check projections for goodness
+ + +÷ - look for patterns of confounding
+ - + - + + make the design points 'cover' the design space

make the design points as far from each other as
"+ It " + "possible

Let's try to apply this information to the 'Bad Block'
"- -+ "+1 example from Box, Hunter, and Hunter (1978).
-+4. --

Consider an experiment to estimate the effect of three
+ ..... independent factors, a, b, and c, on a dependent
. .. IV . + . variable e. Furthermore, there is a nuisance variable,

d, that forces us to block our experiment to try and
provide equal values of d within a block.
Unfortunately, the homogeneous block capacity is

Undulzmble ve D•rt only two, so we can't run all 8 combinations of the

[mmvisomu Block Den other three factors in one block. How should we
assign runs to blocks?

SNow, Hw. OW MOO*, p i The figure at the top of the page shows two designs
represented in the typical tabular fashion. The three
columns on the left correspond to one design, the
three columns on the right to another. For example,
the first design has a high, b high, and c low for the
first point in block one, and a and o high and b low
in the second. Can you tell which of these two
incomplete block designs is defective? Can you tell
why?

The figure on the lower half of the page shows
graphical representations of the same two designs,
along with the three projections found by dropping

BocK .OK OLOCKOLO K either a, b, or c.

Q: What are the blocks confounded with in the top

±~1Z ~L ~LJ~LJdesign? In the bottom?

S, *. • .Q: As a statistician, which design would you prefer,

t1L. DOOK A• .UK4 making the normal assumptions about main effect vs
second order confounding?

Notice also that the top design violates our other
BLOCKED DESIGNS FROM design principles: the ints on a cube are not as far

BOX, HUNTER & HUNTER apart as possible, nor To they cover the space as wellL•-.- as possible.

(pp39.34l)
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( '11 ) Iq ITI N6 KI M IN I'1: HW I CO I; -()M I I I N(; '1% W(|\AY IN I I1 A "1 4 1 INS

Two;. Ps Ilum: - j 'lltwoFa 1 J :

8b al!£ý .

(OMI UrIN1 TI T1 11111.WAV I4' I N(7t'T

CONMUNDItNGOF oE FGtc`OR OOe graphical pattems of confounding are based on

PARITY OF BFFECT the graphical patterns for computing main effects and
higher order hiteractions. T'here are two graphical
operations that induce confounding. The first, which

a: ..-. ', we'll call coounding of ect, superimposes the
graphical pattern for one effect in the same fashion as

Confounding ofrefrec S vwth--n.*ain sofj If another. In the first example at the left, the hi-lo
* rnw~pattern for main effect c is the same as the hi-lo

0 mes 06 patn for main effect a or an ac confounding.

The second figure illustrates another way
confounding patterns may appear graphically, which
we call coufounding ofparity. Here we have four
factors, with factor c coded by squares and circles.
The c main effect is confounded with a again within

d 10 d hi a single level of d, but the sense of the confounding
(parity) reverses between the lo and hi values for d.
This gives an acd confounding term in the defining

Confounding of parity of -a confounding relation for the design.
with

maln effect d In a 4.factor design

3?8
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S< " . ,'

,f We can evaluate even larger designs graphically, but
first we need to look at higher order confounding
patterns, The figure at the left is from Box, Hunter,
and Hunter (1978) and shows the interaction patterns
for 3-factor experiments. Thus if we color code a
fourth factor on a three-factor plot, the color pattern
will convey which effect the fourth factor is
confounded with. In fact, we can carry this tool to
higher dimensions by looking at some (not all) of the
confounding patterns.

(r} l Ilicl, licllur ll ii Ie,,c i.l

d =N-A

c g c c Here is a fractional factorial design from Fries and
bb Hunter (1980). Can you pick out interaction patterns

a a graphically?
d d d

confounded confounded oonfounded The bc interaction pattern on the small cubes has
with with with been circled. This pattern falls on the dg interaction
a- ac abc pattern on the large cube (the alternate dg vertices

have the other bc interaction pair). Thus be is
U4INI.'.tIN,,IN< ,,^,.v.tssz confounded with dg, as shown in the second term of

OUTEIR INNIMIt the defining relation. Similarly on these cubes, the
main effect of a is confounded with the main effect of
f. The opposite pattern occurs on the complementary
dg interaction nodes. Thus dg is confounded with

,drX: & * . af, the third term in the defining relation. Finally, the
a-f main effect confounding switches sense for
opposite sets of the be interaction (we already knew
this since bc is confounded with dg, but we can see it
graphically directly). Thus af is confounded with bc,

_ _ _ the first term in the defining relation.

Ii

I-abcf -bcdg-adr g
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CO )NI' II INI IN( I'ArI"II NS:
H I T''Jl' IN NI]I,

&

SCQ: What should be our goal in developing a better
,"lyhlM"1"1 design graphically?

A: Lay out our points in patterns that correspond to
high order interactions, not main effect patterns.

In this figure, we are able to generate a pattern that
corresponds to three-way interaction on the large

acube vertices, but the small cube vertices still show a
main effect (a) pattern which is confounded with the
large cube three way interaction (deg). Thus we
have an adeg term in the defining relation.,

d

I-abcfw.deg-bcderg

CONPONDIM IAI '41 This third attempt is'deceivingl It appears that we
(WI II' have done it, getting three-way interaction pattetu
adl,, ,on both the small and large cube vertices. But we

dcrg .A. ] have forgotten the f main effect (square vs circle). It
is completely confounded with the tlute factor

m Iinteraction (deg) on the large cube vertices. Thus we
still have one four-letter word for this fractionaldesign! At least it's repeatable: defg.

Note: these designs appeared in the original Artcle,
but the graphical representations did not. The last

___,_,__,_,: design was cited by the authors as the 'minimum
aberration' design because it minimized .he number
of words In the defining relation that had minimum
length.

d
I-9bcdfaIbcegodefg
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Exercise 5: Using the template below, fill in points for a 'good' 1/2 fraction design.
(Hint: check projections and interaction patterns as you go).

Ca

""e

b a

d
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Exercise 6: Can you 'fix' dis design by moving just one point?
A B C D E

+ - +++

+- + +--

Exe~rcise 7: You have a model for a response W as a function of two parameters, X, and
Y. 'You expect the response to be nonlinear, and so a two-level factorlalli
not satisfactory. You have enough resources to run 9 experiments, so a 3A
factorial design is possible. Jnfortunately, your available design space is
not rectangu lar (see below). Lay out your 9 runs within the design space
provided below:

INDEPENDENT
VARLABLE X

Box represents allowable ruige for values of X and Y
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Q: How do we choose the design points in
convenient to regard designs as built up from a number complicated situations when the factors can take on,three or more levels??

of component sets of points, each lot having its points
eqiuidistant from the origin ,,."A.

.. form the vortices of a regular polygon, polyhedron, or
polytops,,,"

*Box end Hunter (1957)

/ This figure shows a graphical design from the first
paper in the first issue of Technomeitrics (DeBaun,
1959). This design is broken down into graphical
subcomponents to make it easier to undeistand..

* CU13E

0 OCTAHEDRON

* CUMOCTAHEORON

®CENTERPOINT
Fiovaw 1
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Hunter (1985) illustrates many common designs
graphically as the vertices or edge points of regular
polyhedra.

3d 3e 3 f

G 3 3h .

Wkl w WW'A C~ ~x po 131 Ike Ce-o .CoqP D..q... 4W4 ... 3q1 I.'4 • m - I..-

eek O...qm. 434 end 34 T. o 3 x 3 X 3 to S .4e,

Let's summarize our discoveries about how to
generate good designs graphically. These ideas are
not new, as these quotes illustrate.

Remember, it is easier to view a complicated design
as being made up of simpler graphical components.

"convenient to regard designs as built up from a number

of component sets of points, each set having its points Source: Box and Hunter (1957)
equidistant from the origin ...

"form the vertices of a regular polygon, polyhedron, or

polytope...
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"Choose new points to MAX(IMIZE the minimumn Also, keep design points as far alpart as possible:
distance from all existing design points,." span the design space.

Source: Kennard and Stone (1969)

"...I Isproed (pped~x1) l~atitsUnfortunately, the Box and Draper goal Is in conflictIt s pove (Apenix ) tat t awith measures taken tominimie bias. To minimize
polynomial of any degree d, Is fitted by the bias, the distribution of points In space should appear
method of least equares over an reion of to come from a uniform distribution. A uniform

I~ifostR I th k arible, wen he ruodistribution does not put points at the extrmeinteestA inthek vriabes hen he ruelocations, but spreads them evenly over the design
function is.a ociynamiei o atnsy legree d, ipd space. Thus there will be a tension between the
then the bias averaged over R is mlnntlmied for sccond and third goals when you design
1ll values of the coat Ilolents of the nhglected

terms, by making the m~mints at order td
ind lessa of the desig~n piointisequall to th Source: Box aind Draper (1959)
corresponding momlients of a'uniform
distribution aver R."

SOME USEFUL CONCEPTS This table p resents our findings on generating
for generating graphical designs. Let's apply these tools to a real
GOOD DESIGNS design problem.

from
MULTIDIMENSIONAL POINT PLOTS

*COVrRHER'B DESIGN SPACE fUNIFOML

*CHECK POECT~IONSTO PLANES
AND LINES

SPN H WHOik1~&jLEDESIGN SPACE:
MtAKE ADDED DESIGN POINTS PAR FROM
EXISTING POINTS TO MINIMIZE VARIANCE

FOR FIRST ORDER EFFECTS

*DECOMPOSE COMPLICATED DESIGNS INTO
GRAPHICAL'SUSCOMPONENTS
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We return to our discussion of the disk pressing
problem. Suppose we have narrowed the list of
factors to vary to the list shown at the left. Upper
and lower limits are specified for each independent
variable, and whether they appear to have linear or
quadratic effect on disk warp values.

REDUCED LIST OF INDEPENDENT VARIABLES

FOR THE

DISK PRESSING STUDY

VYABR LOWER L* UPPER LIM NONtL

GLASS SWITCH 4.900" 4.925" UNIEAR

RAM VELOCITY LOW(-I) HIGH(.I) UNEAR

COOLING TIME (T-12) 12 SEC. Is SEC. LINEAR

LOW-HIGH TRANSITION 200PSI 60OPSI NONLIN

FULL CLAMP PRESSURE IS00PSI 2000PS! NONLIN

Before we design the main 'exploratory' experimqnt,
we'll try to design a small 'pilot' experiment. The
purpose of the pilot experiment is to verify that the
proposed -ranges for the independent variables are
feasible (we don't break the press) and to debug the
experiment running and data collection process. It is
analogous to kicking the tires and checking the
brakes before beginning a long trip.

JC' 'i' LoL' pE.RtIAF.CTS

\4tAT ARE THUý?

WHAT AKE r~iEN( FORO

HO8W IMPOR~TANT

Ao~ 336Th6
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Exercise 8: You have a total of six runs available for a pilot experiment. Identify the
six runs you choose to make graphically and state why you chose them.
Below is a filled-out full-factorial des ign requiring 72 runs, followed by a
template for you to use to place your design points,
(Spend 5 minutes individually, then 5 minutes in groups)

FULL FACTORIAL DESIGN

r3 4,925
GLASS SWITCH (GS):

0 4,900

1500 1800 2100

CLAMP PRESSUR!E (OP)

LOW RAM VELOOfTY HIGH

DESIGN TEMPLATE

GLASS SWITCH (1S): [3 -4,925

* 4.900

'-12

1500 1800 2100

LOW RAM VELOCITY HIGH
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Exercise 9: You have a total of twenty-one runs available for an exploratory
experiment. You will want to fit a model that is linear in three terms (glass
switch, ram velocity, and cooling time) and quadratic in two variables
(low-high transition pressure and full clamp pressure). Idenmfy the
twenty-one runs you :hoose to make graphically and state why you chose

them.

(Spend 10 minutes individually, then 10 minutes in groups)

DESIGN TEMPLATE

r3 4.925
GLASS SWITCH (GS):

0 4.900

~12

1500 1800 2100

CLAMP PRESSURE (CP)

LOW RAM VELOCITY - HIGH
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C. Constructing a Design for the Main Example

This figure shows the full 72-run factorial design and a 36-run 1/2 fraction. How was the 1/2. fraction
chosen? The breakdown into graphical subcomponents is made clear on the following page.

FULL FACTORIAL DESIGN

o3 4.925
GLASS SWITCH (GS):

* 4.900

153

1600. 1800 210,0

CtAMP PRESSURE (CP)

LOW RAM VELOCITY HIGH

FRACTIONAL DESIGN
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FRACTIONAL DESIGN

AS EASY-TO- RECOGNIZE COMPONENTS
(easy to choose run order by labeling points)
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Por 3-level designs such as this one, confounding properties are much harder to detect, and will require
the mathematical checks discussed in Section V. The figure below shows a modified design with
improved confounding patterns. This was generated by Master of Engineering candidates after a one hour
tutorial on these graphical techniques (Young, Moore, and Girard, 1987).

pa

441

F ' ur0 12
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Exercise 10: Use graphical methods to design an experiment to fit a response

metamodel to aisimulation system of your choice. The design should be
for at least three independent variables, at least one of which is at more
than two levels. At least ten runs should be planned.

342



I II.UlU U .IUI1I1L1451Ill. MULTIDIMENSIONAL P61NT PLOTS Pagp 42

77~ D. Displaying Results on.0raphical Designs

Graphical designs provide another advantage: they
provide a framne on which to visualize the system

.S-) responses. This allows one to Interpret the findings
Lwh" U more easily and to pr~opos appropriate models for

the response function more easily.

The simplest examples of such a display are shown
LIN here. The first is from S nee (1985a). Pearon

us (1934) draws simple .,campies of bck strength vs.
kiln location. DItAGRAMMATIC SuCTIO or KIw44

PIQUIP1111 IN ER11AM1111 ARM 4VEMA411 UYI 111441
9P untdlI'I off toom ,, P110, 4.40 ~ 944 6 P0410149.

...... .... M.'OKI. ..... Ths fgur isfro Baes(1989). Elaborate physical
Ill illfill 1e n odel ar611lstrtedbelow and on the

idols JAW JM p floIng page.

Ilia1 Am _(g iI 1  Sources:
...... (U ~J...................next page: Neyman (193s)

ijj fll/ Bx's physical model of them origial central
composite design was less complicated than the
figure below. A simpl, bamm wir structure, It was

. .. , augmented to display response values using insulated
wire. Each vertex was wrapped with a piece of
insulated wire. The color of the insulation was
kyed to the level of response, from red to blue to

whte esg pitswth intermediate values of the
response functfon were wapdwt h w
adjacent colors (red&blue or bucitwhite).

(Model on loan from J. Stuart Hunter)

FIGURE 1t3. PHLOTOGRAPH OF A TNU.EIC DIMENRIONAJL NfDEL, SHOWI NG TEE CON-
T1O.118 OF THE AI'PROXIMATr. PLANE STATIONARY RtIDGE 8VATEA1 CONRTRUCTJRD
(ON THIE VAPIR OF TRCIALS RUN APTUHE POINTH INDICATED 11V THlE MNARDLES. A
DESCR(IPTION OF *rHIMi PAI(TiCULAII EXPERIIMENT 18 FOUJND IN RECTION a. THE

TY'PE. OF EXPERlIMENTAL DESIGN USED IS THAT ffus1i%.%TcD IN FIGURE 8,
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L~ R TU E.

FST.

PlAIN

j I4.

,,r,-
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Another way to display the level of response is with
the size of the ball at the vertex. For two-factor
experiments at two or more levels, this display is

.2i 0 0 0 called a bubble chart. This example is for an
2 0 0 • experiment comparing the performance of several

x 1 0 0 o.types of optimization algorithms with several
astrategies for computing finite difference derivativesST.0 (Barton, 1990). A larger circle means that the2 0 2. 0 0 effectiveness was higher.

h 0 0 0 0 0
0 0 0 0

C: conjugate graodient (al3500)
Algoritrhm 8: BFGS (aWg50)

6: Gay's FS (aWg61 I 1)
0. Daviton optimally concitioneo

Figur 9. Diameter of circles rpresents average rank of functon reduction for each
finite difference method on 19 test functions, with test function argumens
shifted by 100. Rank comparisons over all cptrmizaion codes. Function
accuracy 2 decimil digits, shifted starng points.

FIRST 30 ITERATIONS

This figure from Barton (1985) shows-the contours
- -" of the fitted response function superimposed with the

sequential simplex (Nelder-Mead) design points.

It is also possible to label the design points with their
run order, to look for confounding problems. Thefigure at the left is from Snee (1985a). A better

1- ,6 ,. approach would be to shade the circles
corresponding to run order, or to size them from

7 small circles to large based on run order. This would
hclp to make confounding patterns more obvious.

3 4
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IV. EXERCISE REVIEW:

A. Fishbone/IDEF Diagrams

B. Multidimensional Point Plot

346



V. VALIDATION OP E~XPERIME3NT D FSIGN'

YAWDA1kaInMMGS TH4AT HAVL REEN CRIATPFn URAPHInALLY These techniqnuts allow us to use the creative human
GRAPICA TOLS XPLIT T~ PWER~ ~.ROT ~graphical processing resources to create new designs

andto ainInigh ondesgnproperties. Graphical'
BTTHESE T9CHNIQUES ARE QUALITATIVE AND O'"u TO ERRORi need to back up bur graphical work with precise

WE NEED MATHEUMATICAL CHEOKS: mathematicalt measures of design goodness.

A. Impo~rtance of the Model

A 6i~6CIL 'A~MRM~b~LAs we discussed earlier, the ~ropertles of anA 6EWX*LL/*IR MDELexperiment dedqin depend closely oh~ the kind of
model the expenmenter has chosen. What propertes
do we care about? These include

o stiniability of parameters
ycý% +q, I ++ 0ý4* the variance of the pi~manetor tstimates7~ S' 4% E1  ~ .ews *the covarlance/correlation of

*the mnan sq uare prediction error over'the design
qpace

l@ 4, +y t a XL Th+ no LSt common applicattons in simulation
metamodelin; will be Gehaeal i~near Models:

e -era r ANOVA, ANOCOVA, or Regression r~odels with
ld Qtu~sslan error. There are other interesting
choices for metamodels, particularly for deterrministic
computer simulation output (Sacks, Schiller, and

7'~Zj~\ ~Welch, 1989). At p resent these models require
computer-aided selection of design points.

D~G'N M'1U~KB. The General Linear Model and the Design Matrix

XILI: 1We will often represent a single dependent variable
* j (say WARP) as a y, and the independent variables as

X: V%, k JK x's. In this fomiulation the unknown parameters are
the a's and the value of d 2. Noto that the a's appear
LINEARLY in the formulation. The x's do not have
to be linear, as illustrated by the fourth factor. This

o.~c- cr~a.'C.~ Acould also be written as x4 rather than (x1)2.

The observations are indexed by a letter (I), and the
0.3independent variable coefficients arm indexed by

another letter (j). The x's are indexed by both letters.
4.4 The representation is often xij-, rather than as shown

c A & at left. This model can be wrttc in matrix form.
1', al) The matrix X is called the design matrix.
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Exercise 11: Construct the design matrix (don't forget the column of I's for the
intercept) for the following design

x2

* 1 - 0

Ix

-2 -1 1 2

* -1 -

a) when the model is

y = a0+ajx 1+a2x2+error

b) when the model is

y = ao+ax 1-ta2x,+a3xtx 2+error
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C. Measures of Design Goodness

OPTIMAL DESIGN: Measures for the goodness of a design will be
difficult to generate for arbitrary models of system
response. For the general linear model, though, we

D-Optima~ity have a simple situation- the "oodness of the design
maximize d-t(XTX) for fittint generAl linj . model will depend only on

the pro~rties of the X matrix. In particular, the
corresponds to minknium volume confidence ellipsoid for estimate or the variance.covariane matrix for the
model parameters, i.e. tightest estimates parameter estimates (except the estimate for ad%)

depends on (X'X)-. Since the x's for a candidate
E-Optimaiity design are known before the results are collected
maximize minimum eigenvalue of XIX (only the ,'s are unknown) we can assess the quality

of the design before the experiment is runt
corresponds to minimizing maximum piediction error over
a unit sphere, The list at the left pxesents two of the traditional

definitions of good or 'optimal' designs. In general
we would like the diagonal entries of I to be small.
This corresponds to small variances for our
parameter estimates. We would like the off-diagonal
elements to be even smaller. This corresponds to
low confounding of effects, that is, small covarince
of parameter estimates.

/ ..... SAS.(.oDE fb, ,ft.•

CMS FILCDLF DdSi -DISK D£SI(N P#dV'A A; D. Checldng(XTX)and(XTX)-t

PATA resi,•) The code at the left is for SAS. We enter the design
IJFIL•. OeS1) and can augment it if we have nonlinear x terms inD 'i the general lint.ar model. Don't forget to include a
IN PL j T,, ,column of l's if you have an intercept term, We canstudy the resulting matrix which is (except for the

X1 X1 xi. X k. o factor o2 ) the variance covariance nmatrix Z.
Xi Y. AI*,X•. ZI

Other software such as MATLAB ACED, COED,
etc. can be used to generate mathematical properties
of design goodness for general linear models.

PR~OC MATKIIA;

P6zTr_$ A, DATA - DUSIG.N

SI&FAc - ((K'))

PiONT Y, gIG)`AC
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Exercise 12: Construct the design matrix (don't forget the column of l's for the
intercept) for your own problem. Use SAS, MATLAB, ACED, or any
other software to evaluate (XTX)-1.
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E. Graphical Views of (XTX) and (XTX)"l
MANUFACTURING SYSTEM LAYOUT

DESIGN PROBLEM While it is easy to generate these matrices, it is
difficult to understand the design properties for

TASK I TASK 2 TASK 3 TASK 12I OR 3 designs with more than two or three parameters.
MACHINES MACHINES MACHINES MACI4INBSS

Instead we'll look for way to represent these matrices
graphicallyl Understand that these graphics are forU analysis rather than generation of new experiment
designs. They are used for checking rather than

( ) ~ ) (We'll begin by introducing a new example. We'll try
to design an experiment where the factors are

I quantitative but integer, and the realistic values
correspond to small integers. An analogy might be a
battle deployment plan where the number of
divisions to assign to an area must be selected.

In our example the simulation model represents the performance of a small manufacturing operation..',.e
Ioal of ot study is actualy optimization, but it was pursued by KleUnen and Standridge (1987)'trOgh

itting. a polynomial approximation for sensitivity analysis and insight (goal 2).

The figure at the top of this page illustrates the manufacturing system layout problem. The fabtry
produces a single product, which requires three tasks to be performed in sequence.-:- Spec;il;:pnachlnes are
available to perform each of these tasks. In addition, flexible manufacturing macMnes r a.illable (at
higher cost) which can perform all three machining operations. To meet throughput z. tiireriMents on task
1, 5.2 machines are required. For task 2, 1.3 machines are needed. For task 1,2. m mihines are needed.
We cannot purchase a fractional machine, and so without any flexible equipment we will need six
machines for task 1, two machines for task 2, and three machines for task 3. 0n the other hand, the
purchase of one flexible machine could reduce the demand on one or more other tasks, and so reduce the
number of machines needed. If only five machines for task 1, one for task 2, and two for task 3 are
purchased, two flexible machines will be needed to meet throughput requirements.

The goal of this design is to estimate the throughput as a function, of the number of machines of each type
that are purchased. This is expected to give some insight on the mbit economical choice. Of course, there
are only 2x2x2x3-24 possible configurations, so the exact answer can be had for the cost of 24 simulation
runs. We assume that we have a budget of only 8 runs from which we must make a decision.

The original design had a serious problem. Can you
see it graphically? The effect of the number of

ORIOINALDMICON flexible machines (x4) is confounded with the
x2 number of machines of type 3 (x3-- here re-coded as

±1 rather than 2 or 3). Since the confounding is only
xZI partial, it is hard to eyeball how severe the problem

is. We need to look at the covariance and correlation
x(., ematrices.
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1:XI 'I:It I M NTIAI)IS ICN S

OIR A
MANOIVACIVURING IMBSIGN PRORIAIIN

This figure shows several designs along with the
original design. Which is better? In what way?
These are difficult questions to answer, even when
the varlance-covariance matrix is available. For only

Z _.-/12 . . 8 runs, the matrix with all main effects, two factor
interactions, and a quadratic term for the number of
the covariance matrix the model must be limited to a

few terms.

.t £

MOKPIROORKIIHALIMIWN The second figure illustrates the entries of the
varlance-covariance factor (X IX)M- for the original

,- Adesign. The edge length of each diagonal block is
4&2l to th square root of the diagonal entry

inIX TI. Thus the size of the diagonal blocks are
proportional to standard deviations of coefficient
estimates and the areas are proportional to their

ORIGINAL.=ION variances. This structure determines the size of the
I X, x2 X3 X4 X14 x2 X44 off-diagonal blocks. Each block's shading Is

proportional to the absolute value of the correlation
coefficient of the two parameters corresponding to
that row and that column. The on-diagonal blocks
areshaded 100% (black) because a term's correlation
with itself is 1.

Q: How was this graphic created?

A: Using Canvas"4 for the Macintosh. The
software allows one to see the edge dimension of a
square as it is created. It also provides a numerical
scale (0-100) for shading boxes. Matlabiw was used
to generate the covarlance/corrmlation data. The code
for one of these is shown at the left.

Q: What will a good design look like?Matlab Code:
A: The overall size of the box is determined by the
sum of the standard deviations of all estimated

.I -., parameters. The smaller the better. If we are
.1 t z .particularly interested in a subset of the parameters,
I I I-4 this sub-box should be small. Furthermore, the off-
t-4 .t diagonal shading should be as light as possible. It
. 111 t should be white in the sub-box corresponding to our

most important parameters (no confounding), and it
,- (A3(';I).*^3(.2)1 I- H.. should be pale in the rows and columns which
D - I A3(:,I).* Ai(:,.)l : 4 ([A3DCDEPGH overlap the sub-box but are outside it.
B - [A3(:,2) ., A3(:,3)J
P, IA3(:.2).* A3(:,4)1 XIX aAA3'AA3
o - I A3(:,3). A3(:,4)]
H - (A3(:,4) ,* A1(.4)] oor(AA3)

%XTXI - inv(X1X)
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Trhe figures on this page show the graphical representation of the correlation/variance structure for all
candidate designs. The important effects are the constant (1), the quadratic term (x44) and the linear terms
x1 , x2, x3, and x4.

Note particularly:
• the original design has substantial confounding
* the overall box for the original design is bigger than the designs at the right
- the modified original design eliminates confounding from the sub-box of interest while providing the

"same accuracy on parameter estimates
the Kloijnen box is smaller overall and smaller for the key effects that it does estimate

* the Kleijnen design cannot estimate one of the key parameters (x44)
the expanded x4 design provides both a smaller box and estimabiity of (x4)

EXPRIMENT DESiGNS
FOR AMANUFACTURING DESIGN PROBLEM

ORIOINAL USION KLIUNEN DEION

I X1X X2 X4 X14 X23 X44 I Xi X2 X X14 X24 X34

MODtI'I3D ORIGINAL DISION RXPANDI) X4 DhION

I X1 X2 X3 X4 X_3 X24 XI4 Xl XI X3 X4 X23 X34 X44

NU
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This graphical tool for analysis of correlation and
covariance needs further revision. It is not clear
from the picture that the Kieoinen design cannot
estmate the quadratic effect. This is important,
though; it is like throwing the baby out with the
bathwater,

It is interesting that covariance patterns can be trared
from dark cells to the corrmpoqding variable labels
on the boundary, If the maiti'x could somehow
include all model terms (not just an estimable subset)
one could constrct Taguchi linear graphs by reading
the dark boxes as edges between variables, An
example of Taguchi linear graphs is shown here.

This is also a good reminder that the Taguchi Linear
Graphs, just like the graphical ,orrelatlon/covariance
matrices, are useful for analysis (or cookbook look-
up) but not for creating new designs.

2 sourc,,w: Pignatiello and Ramberg (1985)

3 50 CE~~~ 4
7 6GL5 7

FIGURE 1. Linear Graphs for the L, Orthogonal Array.
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V[. SUMMARY

1 DEFINE GOALS We have examined graphical methods for three of the
five steps in designing experiments. These methods
are easy to learn, fun to do, and provide a new
dimension of insight to the qualities and

2 IDENTIFY VARIABLES consequences of a particular design.

3 CLASSIFY VARIABLES

4 DESIGN EXPERIMENT

5 VALIDATE DESIGN

Graphical designs aft not a replacement for other
design techniques. Like other techniques,, they have
their own advantages and disadvantages., Aut until
recently, they have not been publicized.

STRENGTHS AND WEAL•I•N Es
OF'GRPHICAL METHODS

+ FLEXMLK
MAKE TRADEOFFI VISUALLY
INCORPORATE CONSTRAINT ORAPHICALLY

+ ROBUST (t00a4r0m; tof It order moduls& izsrmta•om)

+ USES POWFJUMUL COMPUTING DEVICE
(birm v•=n smft cad r1* brai)

+ EASY TO USE AND EASY TO R•ACBER

+ EASY TO TEACH

NOT QUANTITATIVE

- DIMENSIONAL LIMITATIONS
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As this quote from George Box (1984) suggests,
graphical methods are perhaps more important for
design than for analysis, since design is a higlly
creative activity, In this age of computerized
statistical packages, errors in analysis can always be
redone, but an error in design cannot be fixed by a
clever analysis.

It is well-known tnat wrifk the- left bm'IlA"Ofiys a
conscious and dominant role, one may be quite un-
aware of the working of the less assertive right brain.
For example, the apparently instinctive knowledge of
.what to do and how to-dQ it enjoyed by an experi-
enced tennis player comes from the rih brain, It is
significant that this skill may be temporarily lost if we
invite the tennis player to explain how he does it, and
thus call the left brain into a dominant and interfering
mode.

In this context we sec the data analyst's insistence
on "letting the data speak to us" by plots and displays
as an instinctive understanding of the need to en-
courage and to stimulate the pattern recognition and
model generating capability of the right brain. Also, it
expresses his concern that we not allow our pushy
deductive left brain to take over too quickly and
perhaps forcibly produce unwarranted conclusions
based on an inadequate model.

While the accomplishment of the right brain in
finding patterns in data and residuals is of enormous
consequence to scientific discovery, some check is ob-
viously needed on its pattern-seeking a-bil-y, 16"
common experiencc shows that some pattern or other
can be seen in almost any set of data or facts. A check
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"VII. FURTHER TOPICS

_A. Graphical Designs for Many Factors and/or
Many Levels

i j ii IW Graphical methods for experiment design are
, i , jinherently low-dimensional. How can they be used

to help design experiments with many factors?

Il , i• " I, ",It may be possible to develop low-dimensionalK•fl designs on a subset of the factors and 'paste' these
"subset designs together to form the complete design,
Pasting here means a I-I pairing between the design

0- points for one subset of factors arid the design points
"for the other subset. The goodness of the design will

-r,~ ~ eend not only on the (graphical) quality of the two
F1T1 i- i 'subeset dcsigns, but on the way in which the subset

" .' design points are paired This Is illustrated in the
"": figure at the left4 Two full-factorial 22 subset

designs (a,b and c,d) are paireo in two different
ways, yielding two different 24"2 designs.

Some designs can be projected onto a lower-
2 dimensional space. Draper (1985) found that a

Plackett-Burman (1946) design for 11 factors had
only two possible projections' in 5 dimensional

U ... [IIspace, They am illustrated graphically at the left.
3 4q

Projecting designs into lower-dimensional space can
help in design analysis, but its value for design

a synthesis remains unclear.

2

*allowing sign changes and permutations of axes

3 4
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Even with relatively few dimensions, say six, it can
be difficult to visualize and develop a design if the
factors each occur at three or more levels. In this
case the nested cube approach described earlier
becomes visually distracting rather than helpful.

One way to simplify the representation is to
substitute icons for the smaller cubes. The figures
here show icons for small cubes for a Box-Behnken
(1960) design. Each small cube hlas 27 possible sites
for an experiment, based on the 3V plan for these
three factors.

FCIOor3o F rION A PRFiaTATION

Using these icons gives this representation for the
"Box-tehnken design for 6 factors at three levels.
Some characteristics of the design are immediately

V) apparent from its graphical represen.ation. First,
none of the exteme comers of the design space are

all included in the design. Second, the center point is
, not included.

C e d *

I. J: 14 11
10 ,1 I'l

I B ,- oU- 3 .d -

35 I* 8 IlOilSI CII t CIlA I

Box - Bthnkon 3 Fractlonal Dmigln
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"These icons also make it easier to synthesize new
"designs by manipulating the icon patterns. This
design has poorer properties than the Box-Behnken
design. Reasons become clear when one looks at the

f design projections. Those for the front face of the
," f ~ large cube (projecting out d . ) are shown at the

left of the figure.

,,. / Again, these weaknesses arw more clear by looking at

e the design and its projections than by trying to read
and compare the tabular representations at the lower

"-/ right of each figure.

S-- d -- . . . . .

Al o ol Oi tI,, , ,I °0 , O* 1'
[ IAI 0 a t 1 o .

0*1 • 0 l 0 t 1 .

B B. Mixture Experiments
Bad - Barton 36 Fractional Design

While mixture experiments are often associated with
chemical and petroleum industries, they are useful in
many resource allocation problems as well. They

• _• / \' . "'. *can be used for military strategy, medical treatmeat,
A 0 ,t. \*'' ,,and corporate strategic planning.

""321 t,'w. • !.31 ,,.. Mixture experiments involve facto v;,hose s=,,., ,.., ust be a constant. For example, '..constituents of

Sa chemical ompound must sum to 100%. Theo
,capital expenditures for a large corporation must sum

"A 14. low, Ato the amount allocated for this purpose (if we
nou.. i,, ,w.. ., ,, ,, ...I med I~.el mfrmple~io..... em ,,e.-. include a dummy category: reserves). Optimal

weapon mix for strategic forces might be studied
through mixture experiments, especially as budget

,,,,.. E .m ..... .. ,..~,• .,constraints become ever tighter.

Design points for a mixture experiment are
represented graphically as points on or in a simplex
(triangle, tetrahedron, etc.), in contrast with the
cubes and rectanbles used for factorial designs. The
figures at the left show designs for three and four
factors at two and three levels (Cornell, 1981).

In addition to the usual mixture constraint, most
X, •practical designs have additional requirements that

limit the design space. These constraints may be to
focus the study on reasonable mixtures, as in the

,,. . ,figures from Koons and Wilt (1985) and Hare
(1985) at the left, or they may be due to real limits,
as shown in the figure from Snee (1981) on the

-....... following page.
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CONS-.~A If

.Iox A1065I OX 'CX This design is limited by 5 bounding constraints on
1SX, 0N, 1OX 0the three components in the mixture, and by two

qo~ft. 1 *qOmultiple-component constraints. The. design points
selected for the experiment ame indicated by solid
dots.

The computerized design software xvEwR (Snee,
198 1) uses geometric concepts of edge;', vertices,
and face centers to select good design points. This
approach to design can be thought of as mental
graphics, since a graphical image is used but is not
actually drawn.

Figure 4. rhree.Compone .nt Mixture. system With C.IcmltBokDeinSingle Component and Multiple Component Con, C.ncmetBlkDsis
stroints A graphical representation for an incomplete block

design was presented on page 27. A blocking
.... ,,.: ,j ~variable'is thought of much as any other factor,

* except that a) it is qualitative, not quantitative, and b)
i~: ~J:there are usually more than two values (blocks).

The blocking factor is usually qualitative, not
0 ~quantitative. This maims checking for confoundifig

0 :~ patterns mom difficult.Thegraphicalblc ute
awl ualPIMSAW4shufledarondmentally at least, to identify

confounding patterns. The confounding on page 27
is seen by pairing the second and thir blocks against

VAIL. G"eomebkal Confiparatisn the 1-4 pair.
Severl am~K~eg Amrl by Ia m nAnstia, of puwn0Amc titmilgurstIVIIIII

0.9., the Dauarw mnmguratim) or ils ~ iawcasso
32 triabskes III jaenq"Ove eve$ fr "Mental gra-ihics' yild see eealcasso

(0a tilfAW1 VIt"Noi t partially blanced incomplete block designs, These
8: 7~ Imlhlm W"rdtepimu are described at the left by Kempthorne (1952).
BPleleblockdoui, Furewumpkewait

D. Network Representations

The edgc~s of a multidimensional point plot, along
with the design points, mike up a network that
directly represents the design. There are also
indirect network representations that can be useful in
creating and analyzing designi.
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blocks treatment ...

levels

This network represents the allocation of factor levels
2 to blocks. Butz (1982) relates connectivity in such

networks to estimable contrasts of factor levels.
These plots can be used to develnp and analyze

3 designs for use with ANOVA models.

ALL. TIeATMENT BIPARTITE
CONTRA~STS 4 GRAPH 15
ESTIMABLE COOUC1IC

As mentioned on page 53, Taguchi's 'linear graphs'
provide analytical insight, but do not really help
generate designs. They illustrate confounding
patterns graphically by labeling nodes and edges with
effects. For example, the triangle at the upper left
indicates that the main effect of factor 5 will be

j.o2 confounded with the 1-4 interaction effect in thatU ) design.
2 64 The linear graphs make cookbook design selectiog a

more effective approach, A catalog of these network
reresentations makes it possible to select a design

with confounding patterns that match fth partIcular
needs at hand.

'2I Sores: Taguchi (1980) and Pignatlello and
Ramnberg (1985)

104 6

The defloaogtontLit (I +ABC. Th~ecotouhd in, potters as hs. .umiuaiaW

i+.4B. l,, . 4 +, N ulC eh,. tt Cuthbert Daniel (1962) also used networks to
A +.4C~ represent confounding patterns in fractional factorial

Th C~ +ali .4i hu. at ig,,.Ii w~t b lve iiaay. ~ designs. These are harder to decipher. Their
-n: tla~lle *4I *aot t(M ulwlIt 1 rel "j'grrr 119u 1 1 0"e tha tht, ' usefulness seems to be for design analysis, not
that ia, "haut' a i. (a auwtd by the 2a mpodgeadi,'angtet. n I,.uljrpla design synthesis.

A *

h. .C.00.sdi na p ". . d .thu I.,. " d'. I-.
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TRUCKS -

ASAMPLES 1
BATCIHS Graphical representations are helpful in developing

nested designs for random and mixed effects miodils.
SCHEATI fo ANRFW- HERACHI DEIGNThe simple schematic at right wrakces the samplingsOHIM'.ATIC or ANDRSWWHIERARC.DESIGN pattern clear. Leone, et. al. (1968) use these simple

figures to present their hierarchical designs.

S| fI S T! S • i 14 M

liWi•p twh4..!,w *190,i s Vifil IilllW I I

I , ,~ 4,. ,, ,i l t , ' llll,

hi I I IAndrews used mmel~aborate representatioas for
nested designs, The figures take more time to draw,

,i I Ii nIt I I I Ibut they can prompt the expe•rnemer to thinl about
important procedural or design issues. This
elaborate figures may well have merit over its simpler
counterpart above.

E. Nomograms

Nomograms are graphical aids for computation. In
experiment design they can be used for design
(choosing sample sizes, operating conditions) or for
analysis (identifying design properties such as
variance of the estimated parameters). In the+ I example at the left, Villars (1951) shows the relative

I Iefficiency of ANOVA designs as a function of the
"a Inumber of levels of the treatment factor and the

number of replications.
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20 1~~; g i

3 This nomogram from Nelson and Kielpinski (1975)
is for high temperature accelerated lifetests, It allows
one to identify the variance of a predicted response as

~ a function of test temperatures and sample

Nomograms can be modified graphically to provide
50. alternative or additional information. This allows
30 0one to optimize other properties (than prediction

variance)3 by adding graphical constructs to the
yoau figure. This example alows the experimenter to

It choose test conditions that will yield the required

temperature. This is important because hi~h test
temperatures can introduce failure mechanisms that
arm not active in the normal operating iange.

I Source: Barton (1987)
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There are many nomograms aid in sample size
determination. The examnple at the left is from Beech
(1961) for the selection of sample size to estimate the

,.","regression coefficient to a desired precision.

Lve A le WAR
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